Abstract

We derived an analytical formula for the optimum width of the access waveguides of 1×N multimode interference (MMI) couplers. Eigenmode-decomposition-based simulations show that the optimum width relation corresponds to the points of diminishing returns in both insertion loss and output uniformity versus access waveguide width. We fabricate and characterize 1×12 MMI couplers on a nanomembrane of silicon-on-insulator substrate. The experimental investigations demonstrate that the analytical results can be reliably used as a design rule for MMI couplers with large number of outputs.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich and T. Kamiya, J. Opt. Soc. Am. 68, 583 (1978).
    [Crossref]
  2. J. Z. Huang, R. Scarmozzino, and R. M. Osgood, Jr., IEEE Photon. Technol. Lett. 10, 1292 (1998).
    [Crossref]
  3. R. Yin, J. Yang, X. Jiang, J. Li, and M. Wang, Opt. Commun. 181, 317 (2000).
    [Crossref]
  4. Y. Shi, D. Dai, and S. He, Opt. Commun. 253, 276 (2005).
    [Crossref]
  5. Q. Wang, J. Lu, and S. He, Opt. Commun. 209, 131 (2002).
    [Crossref]
  6. R. M. Lorenzo, C. Llorenle, E. J. Abril, and M. López, Proc. Inst. Elect. Eng. Optoelectron. 145, 65 (1998).
    [Crossref]
  7. L. Soldano and E. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [Crossref]
  8. M. Rajarajan, B. Rahman, T. Wongcharoen, and K. Grattan, J. Lightwave Technol. 14, 2078 (1996).
    [Crossref]
  9. A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 6, 53 (2010).

2010 (1)

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 6, 53 (2010).

2005 (1)

Y. Shi, D. Dai, and S. He, Opt. Commun. 253, 276 (2005).
[Crossref]

2002 (1)

Q. Wang, J. Lu, and S. He, Opt. Commun. 209, 131 (2002).
[Crossref]

2000 (1)

R. Yin, J. Yang, X. Jiang, J. Li, and M. Wang, Opt. Commun. 181, 317 (2000).
[Crossref]

1998 (2)

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, Jr., IEEE Photon. Technol. Lett. 10, 1292 (1998).
[Crossref]

R. M. Lorenzo, C. Llorenle, E. J. Abril, and M. López, Proc. Inst. Elect. Eng. Optoelectron. 145, 65 (1998).
[Crossref]

1996 (1)

M. Rajarajan, B. Rahman, T. Wongcharoen, and K. Grattan, J. Lightwave Technol. 14, 2078 (1996).
[Crossref]

1995 (1)

L. Soldano and E. Pennings, J. Lightwave Technol. 13, 615 (1995).
[Crossref]

1978 (1)

Abril, E. J.

R. M. Lorenzo, C. Llorenle, E. J. Abril, and M. López, Proc. Inst. Elect. Eng. Optoelectron. 145, 65 (1998).
[Crossref]

Chen, R. T.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 6, 53 (2010).

Dai, D.

Y. Shi, D. Dai, and S. He, Opt. Commun. 253, 276 (2005).
[Crossref]

Grattan, K.

M. Rajarajan, B. Rahman, T. Wongcharoen, and K. Grattan, J. Lightwave Technol. 14, 2078 (1996).
[Crossref]

He, S.

Y. Shi, D. Dai, and S. He, Opt. Commun. 253, 276 (2005).
[Crossref]

Q. Wang, J. Lu, and S. He, Opt. Commun. 209, 131 (2002).
[Crossref]

Hosseini, A.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 6, 53 (2010).

Huang, J. Z.

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, Jr., IEEE Photon. Technol. Lett. 10, 1292 (1998).
[Crossref]

Jiang, X.

R. Yin, J. Yang, X. Jiang, J. Li, and M. Wang, Opt. Commun. 181, 317 (2000).
[Crossref]

Kamiya, T.

Kwong, D. N.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 6, 53 (2010).

Lee, B. S.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 6, 53 (2010).

Li, J.

R. Yin, J. Yang, X. Jiang, J. Li, and M. Wang, Opt. Commun. 181, 317 (2000).
[Crossref]

Lin, C.-Y.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 6, 53 (2010).

Llorenle, C.

R. M. Lorenzo, C. Llorenle, E. J. Abril, and M. López, Proc. Inst. Elect. Eng. Optoelectron. 145, 65 (1998).
[Crossref]

López, M.

R. M. Lorenzo, C. Llorenle, E. J. Abril, and M. López, Proc. Inst. Elect. Eng. Optoelectron. 145, 65 (1998).
[Crossref]

Lorenzo, R. M.

R. M. Lorenzo, C. Llorenle, E. J. Abril, and M. López, Proc. Inst. Elect. Eng. Optoelectron. 145, 65 (1998).
[Crossref]

Lu, J.

Q. Wang, J. Lu, and S. He, Opt. Commun. 209, 131 (2002).
[Crossref]

Osgood, R. M.

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, Jr., IEEE Photon. Technol. Lett. 10, 1292 (1998).
[Crossref]

Pennings, E.

L. Soldano and E. Pennings, J. Lightwave Technol. 13, 615 (1995).
[Crossref]

Rahman, B.

M. Rajarajan, B. Rahman, T. Wongcharoen, and K. Grattan, J. Lightwave Technol. 14, 2078 (1996).
[Crossref]

Rajarajan, M.

M. Rajarajan, B. Rahman, T. Wongcharoen, and K. Grattan, J. Lightwave Technol. 14, 2078 (1996).
[Crossref]

Scarmozzino, R.

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, Jr., IEEE Photon. Technol. Lett. 10, 1292 (1998).
[Crossref]

Shi, Y.

Y. Shi, D. Dai, and S. He, Opt. Commun. 253, 276 (2005).
[Crossref]

Soldano, L.

L. Soldano and E. Pennings, J. Lightwave Technol. 13, 615 (1995).
[Crossref]

Ulrich, R.

Wang, M.

R. Yin, J. Yang, X. Jiang, J. Li, and M. Wang, Opt. Commun. 181, 317 (2000).
[Crossref]

Wang, Q.

Q. Wang, J. Lu, and S. He, Opt. Commun. 209, 131 (2002).
[Crossref]

Wongcharoen, T.

M. Rajarajan, B. Rahman, T. Wongcharoen, and K. Grattan, J. Lightwave Technol. 14, 2078 (1996).
[Crossref]

Yang, J.

R. Yin, J. Yang, X. Jiang, J. Li, and M. Wang, Opt. Commun. 181, 317 (2000).
[Crossref]

Yin, R.

R. Yin, J. Yang, X. Jiang, J. Li, and M. Wang, Opt. Commun. 181, 317 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 6, 53 (2010).

IEEE Photon. Technol. Lett. (1)

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, Jr., IEEE Photon. Technol. Lett. 10, 1292 (1998).
[Crossref]

J. Lightwave Technol. (2)

L. Soldano and E. Pennings, J. Lightwave Technol. 13, 615 (1995).
[Crossref]

M. Rajarajan, B. Rahman, T. Wongcharoen, and K. Grattan, J. Lightwave Technol. 14, 2078 (1996).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Commun. (3)

R. Yin, J. Yang, X. Jiang, J. Li, and M. Wang, Opt. Commun. 181, 317 (2000).
[Crossref]

Y. Shi, D. Dai, and S. He, Opt. Commun. 253, 276 (2005).
[Crossref]

Q. Wang, J. Lu, and S. He, Opt. Commun. 209, 131 (2002).
[Crossref]

Proc. Inst. Elect. Eng. Optoelectron. (1)

R. M. Lorenzo, C. Llorenle, E. J. Abril, and M. López, Proc. Inst. Elect. Eng. Optoelectron. 145, 65 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a 1 × N MMI beam splitter. Inset is a cross-sectional schematic of the SOI waveguiding structure. n si = 3.47 , n Si O 2 = 1.45 , and n Si O 2 ( PECVD ) = 1.46 .

Fig. 2
Fig. 2

(a), (b) Variations of the insertion loss and output uniformity, respectively, versus MMI coupler length. The MMI device is 1 × 12 ( N = 12 ) , W MMI = 60 μm , h = 230 nm , and different W w values. (c), (d) Variations of the insertion loss and output uniformity, respectively, versus W w for 1 × 12 , 1 × 3 , 1 × 6 , and 1 × 12 MMI couplers. Because of symmetry, uniformity is 0 dB for all W w values in the case of the 1 × 2 MMI coupler. W w , opt values for each MMI device are indicated by crosses (×).

Fig. 3
Fig. 3

(a) Scanning electron microscope pictures of 1 × 12 MMI couplers with W MMI 60 μm , L MMI = 553.4 μm , and different W w .

Fig. 4
Fig. 4

Top-down IR images of MMI device outputs for (a) W w = 0.50 μm , and (b) W w = 2.60 μm . (c) and (d) Insertion loss and uniformity measurement results for 1 × 12 MMI couplers with W MMI = 60 μm , L MMI = 553.4 μm , and different W w values, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β p 2 + κ y p 2 = ( 2 π n eff λ 0 ) 2 ,
β p β 0 p ( p 2 ) 3 L π ,
Δ φ p = Δ β p L MMI = π λ 0 2 ( p + 1 ) 4 64 N n eff 2 W e 2 .
W w , opt = 1 2 N 4 λ 0 W e n eff .

Metrics