Abstract

The propagation loss of a direct UV-written silica-on-silicon waveguide is measured using an elegant nondestructive method. The technique uses integrated Bragg grating structures, which are observed from opposing launch directions to obtain information about the optical power at different positions along the length of the waveguide. Critically, the technique is ratiometric and independent of coupling loss and grating variability. This high-precision measurement is suitable for low-loss planar waveguides. From this data, the propagation loss of the UV-written waveguides was observed to be 0.235±0.006dB/cm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ghatak and K. Thyagarajan, in Introduction to Fiber Optics (Cambridge U. Press, 1997), pp. 413–416.
  2. Y. H. Won, P. C. Jaussaud, and G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
    [Crossref]
  3. Y. Okamura, S. Yoshinaka, and S. Yamamoto, Appl. Opt. 22, 3892 (1983).
    [Crossref] [PubMed]
  4. T. Feuchter and C. Thirstrup, IEEE Photonics Technol. Lett. 6, 1244 (1994).
    [Crossref]
  5. M. Haruna, Y. Segawa, and H. Nishihara, Electron. Lett. 28, 1612 (1992).
    [Crossref]
  6. G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
    [Crossref]
  7. H. J. R. Dutton, in Understanding Optical Communications (Prentice-Hall, 1998), pp. 266–267.
  8. A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
    [Crossref]

2007 (1)

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

2002 (1)

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[Crossref]

1994 (1)

T. Feuchter and C. Thirstrup, IEEE Photonics Technol. Lett. 6, 1244 (1994).
[Crossref]

1992 (1)

M. Haruna, Y. Segawa, and H. Nishihara, Electron. Lett. 28, 1612 (1992).
[Crossref]

1983 (1)

1980 (1)

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[Crossref]

Adikan, F. R. M.

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

Albanis, V.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[Crossref]

Chartier, G. H.

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[Crossref]

Dutton, H. J. R.

H. J. R. Dutton, in Understanding Optical Communications (Prentice-Hall, 1998), pp. 266–267.

Emmerson, G. D.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[Crossref]

Feuchter, T.

T. Feuchter and C. Thirstrup, IEEE Photonics Technol. Lett. 6, 1244 (1994).
[Crossref]

Gates, J. C.

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

Gawith, C. B. E.

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[Crossref]

Ghatak, A.

A. Ghatak and K. Thyagarajan, in Introduction to Fiber Optics (Cambridge U. Press, 1997), pp. 413–416.

Haruna, M.

M. Haruna, Y. Segawa, and H. Nishihara, Electron. Lett. 28, 1612 (1992).
[Crossref]

Ibsen, M.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[Crossref]

Jaussaud, P. C.

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[Crossref]

Nishihara, H.

M. Haruna, Y. Segawa, and H. Nishihara, Electron. Lett. 28, 1612 (1992).
[Crossref]

Okamura, Y.

Payne, D. N.

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

Sahu, J. K.

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

Segawa, Y.

M. Haruna, Y. Segawa, and H. Nishihara, Electron. Lett. 28, 1612 (1992).
[Crossref]

Smith, P. G. R.

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[Crossref]

Standish, R. J.

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

Thirstrup, C.

T. Feuchter and C. Thirstrup, IEEE Photonics Technol. Lett. 6, 1244 (1994).
[Crossref]

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, in Introduction to Fiber Optics (Cambridge U. Press, 1997), pp. 413–416.

Watts, S. P.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[Crossref]

Webb, A. S.

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

Williams, R. B.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[Crossref]

Won, Y. H.

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[Crossref]

Yamamoto, S.

Yoshinaka, S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. H. Won, P. C. Jaussaud, and G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[Crossref]

Electron. Lett. (3)

M. Haruna, Y. Segawa, and H. Nishihara, Electron. Lett. 28, 1612 (1992).
[Crossref]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[Crossref]

A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, and D. N. Payne, Electron. Lett. 43, 517 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Feuchter and C. Thirstrup, IEEE Photonics Technol. Lett. 6, 1244 (1994).
[Crossref]

Other (2)

A. Ghatak and K. Thyagarajan, in Introduction to Fiber Optics (Cambridge U. Press, 1997), pp. 413–416.

H. J. R. Dutton, in Understanding Optical Communications (Prentice-Hall, 1998), pp. 266–267.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of sample produced for loss measurement. Two waveguides are direct UV written with ten and five integrated Bragg gratings, with central wavelengths as shown. The sample is 40 mm long with 2-mm-long gratings, and 2-mm-long waveguide sections between in the ten-grating case, or with 6-mm-long separating sections in the waveguide with five gratings. Gratings are interrogated by launching from opposing directions.

Fig. 2
Fig. 2

Obtained reflection spectra R and R for waveguide containing ten Bragg gratings.

Fig. 3
Fig. 3

Schematic showing the measured reflectivities R i and R i from the ith grating in the waveguide. The input power reaching the grating (launched power minus coupling losses) from opposing directions is represented by t and t .

Fig. 4
Fig. 4

Ratio of reflected power of each grating against the position of the grating within the waveguide. Plot is for the waveguide containing ten gratings.

Fig. 5
Fig. 5

Ratio of reflected power of each grating against the position of the grating within the waveguide containing five gratings.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R i = t 2 r i exp ( 2 a x i ) , R i = t 2 r i exp ( 2 a ( L x i ) ) ,
R i R i = η exp ( 4 a x i ) , η = t 2 t 2 exp ( 2 a L ) .
ln R i R i = ln η 4 α x i ,

Metrics