Abstract

We thoroughly compare the out-of-plane bandgaps generated by three realistic two-dimensional lattices: a triangular and a square arrangement of holes and a triangular arrangement of rods. We demonstrate that, for any given hole-diameter-to-pitch ratio d/Λ, the triangular arrangement of interconnected resonators generates the widest possible bandgap along the air line, and we propose a physical interpretation explaining these results. The design of a hollow core photonic bandgap fiber based on such a lattice and able to transmit light with sub-decibel-per-meter losses over an octave of frequencies is presented for the first time, to the best of our knowledge.

© 2010 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription