Abstract

We thoroughly compare the out-of-plane bandgaps generated by three realistic two-dimensional lattices: a triangular and a square arrangement of holes and a triangular arrangement of rods. We demonstrate that, for any given hole-diameter-to-pitch ratio d/Λ, the triangular arrangement of interconnected resonators generates the widest possible bandgap along the air line, and we propose a physical interpretation explaining these results. The design of a hollow core photonic bandgap fiber based on such a lattice and able to transmit light with sub-decibel-per-meter losses over an octave of frequencies is presented for the first time, to the best of our knowledge.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005).
    [CrossRef] [PubMed]
  2. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
    [CrossRef] [PubMed]
  3. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009).
    [CrossRef]
  4. P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, Opt. Express 17, 16238 (2009).
    [CrossRef] [PubMed]
  5. F. Poletti and D. J. Richardson, Opt. Lett. 32, 2282 (2007).
    [CrossRef] [PubMed]
  6. B. K. Thomas, S. Suzuki, L. Fu, and L. Dong, in 35th European Conference on Optical Communication (2009), paper PD1.2.
  7. T. A. Birks, G. J. Pearce, and D. M. Bird, Opt. Express 14, 9483 (2006).
    [CrossRef] [PubMed]
  8. M. Yan, P. Shum, and J. Hu, Opt. Lett. 30, 465 (2005).
    [CrossRef] [PubMed]
  9. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  10. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, Opt. Express 14, 7974(2006).
    [CrossRef] [PubMed]
  11. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, Opt. Express 16, 4337 (2008).
    [CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (1)

2006 (2)

2005 (2)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005).
[CrossRef] [PubMed]

M. Yan, P. Shum, and J. Hu, Opt. Lett. 30, 465 (2005).
[CrossRef] [PubMed]

2003 (1)

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Amezcua-Correa, R.

Benabid, F.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, Opt. Express 17, 16238 (2009).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005).
[CrossRef] [PubMed]

Bird, D. M.

Birks, T. A.

T. A. Birks, G. J. Pearce, and D. M. Bird, Opt. Express 14, 9483 (2006).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005).
[CrossRef] [PubMed]

Broderick, N. G. R.

Couny, F.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, Opt. Express 17, 16238 (2009).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005).
[CrossRef] [PubMed]

Dong, L.

B. K. Thomas, S. Suzuki, L. Fu, and L. Dong, in 35th European Conference on Optical Communication (2009), paper PD1.2.

Fu, L.

B. K. Thomas, S. Suzuki, L. Fu, and L. Dong, in 35th European Conference on Optical Communication (2009), paper PD1.2.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Hu, J.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005).
[CrossRef] [PubMed]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Light, P. S.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Muller, D.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Pearce, G. J.

Petrovich, M. N.

Poletti, F.

Richardson, D. J.

Roberts, P. J.

Russell, P. S.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005).
[CrossRef] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Shum, P.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Suzuki, S.

B. K. Thomas, S. Suzuki, L. Fu, and L. Dong, in 35th European Conference on Optical Communication (2009), paper PD1.2.

Thomas, B. K.

B. K. Thomas, S. Suzuki, L. Fu, and L. Dong, in 35th European Conference on Optical Communication (2009), paper PD1.2.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

van Brakel, A.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Wang, Y. Y.

Wheeler, N. V.

Yan, M.

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

J. Eur. Opt. Soc. (1)

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Other (1)

B. K. Thomas, S. Suzuki, L. Fu, and L. Dong, in 35th European Conference on Optical Communication (2009), paper PD1.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Top, interconnected two-dimensional lattices studied in this work: TLH, SL, and TLR. Gray circles represent the resonating rods, connected by the red struts. Bottom, hole shape of realistic claddings, with rounded holes where black and white areas represent air and silica, respectively.

Fig. 2
Fig. 2

Width along the air line of the OOP fundamental PBG ( W ) for the three lattices shown in Fig. 1. (a) Dependence of W on r c , which controls hole roundedness and rod size, for d / Λ = 0.98 ; (b) dependence of W on d / Λ . Each point in this graph represents the maximum W that can be achieved by optimizing r c .

Fig. 3
Fig. 3

Minimum rod spacing ( Λ r ) versus hole-to-hole spacing (Λ) for the three lattices of this study, from left to right: TLH, SL, and TLR.

Fig. 4
Fig. 4

Ideal structure of the octave spanning PBGF based on the TLR lattice. d / Λ = 0.995 , Λ r = 4.3 μm , r c = 0.114 Λ . The fiber has a seven-missing-rod central core and six and a half complete rings of rods. The mesh used in the FEM simulations (750,000 degrees of freedom) and the fundamental optical mode ( 2 dB contour lines) are also shown.

Fig. 5
Fig. 5

Simulated optical properties of the fiber in Fig. 3. (a) PBG of the optimum TLR cladding (white area) and effective index (neff) of the fundamental mode (solid curve) and the high order mode (dashed curve). (b) Confinement loss and group velocity dispersion of the fundamental mode.

Metrics