Abstract

Ideal quantum frequency conversion (QFC) devices enable wavelength translation of a quantum state of light while preserving its essential quantum characteristics, namely photon statistics and coherence. However, the generation of noise photons due to spontaneous scattering of the strong classical pump used in the three-wave mixing process can limit QFC fidelity. We experimentally and theoretically characterize the noise properties of a difference- frequency generation device for QFC and find that fabrication errors in the quasi-phase-matching grating enhance generation of noise photons by parametric fluorescence.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kumar, Opt. Lett. 15, 1476 (1990).
    [CrossRef] [PubMed]
  2. H. J. Kimble, Nature 453, 1023 (2008).
    [CrossRef] [PubMed]
  3. Z. Y. Ou, Phys. Rev. A 78, 023819 (2008).
    [CrossRef]
  4. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, Opt. Lett. 30, 1725 (2005).
    [CrossRef] [PubMed]
  5. M. A. Albota and F. N. C. Wong, Opt. Lett. 29, 1449 (2004).
    [CrossRef] [PubMed]
  6. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
    [CrossRef] [PubMed]
  7. A. P. VanDevender and P. G. Kwiat, J. Opt. Soc. Am. B 24, 295 (2007).
    [CrossRef]
  8. H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, Appl. Phys. Lett. 93, 071101 (2008).
    [CrossRef]
  9. H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, Opt. Lett. 33, 639 (2008).
    [CrossRef] [PubMed]
  10. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  11. J. Huang, “Multifunctional optical signal-processing devices in periodically poled lithium niobate,” Ph.D. dissertation (Stanford University, 2007).
  12. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, Opt. Lett. 27, 179 (2002).
    [CrossRef]
  13. F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).
    [CrossRef]
  14. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, Opt. Express 15, 7479 (2007).
    [CrossRef] [PubMed]
  15. D. Marcuse, Theory of Dielectric Optical Waveguides(Academic, 1974).
  16. R. L. Byer in Quantum Electronics, a Treatise, H.Rabin and C.L.Tang, eds. (Academic, 1975), Vol. 1.
  17. V. Rastogi, K. Thyagarajan, M. R. Shenoy, P. Baldi, M. De Micheli, and D. B. Ostrowsky, J. Opt. Soc. Am. B 14, 3191 (1997).
    [CrossRef]
  18. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, Opt. Lett. 28, 558 (2003).
    [CrossRef] [PubMed]

2008 (4)

H. J. Kimble, Nature 453, 1023 (2008).
[CrossRef] [PubMed]

Z. Y. Ou, Phys. Rev. A 78, 023819 (2008).
[CrossRef]

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, Opt. Lett. 33, 639 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).
[CrossRef]

2005 (2)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, Opt. Lett. 30, 1725 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2002 (1)

1997 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1990 (1)

Albota, M. A.

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

Asobe, M.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

V. Rastogi, K. Thyagarajan, M. R. Shenoy, P. Baldi, M. De Micheli, and D. B. Ostrowsky, J. Opt. Soc. Am. B 14, 3191 (1997).
[CrossRef]

Battle, P.

Beausoleil, R. G.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

R. L. Byer in Quantum Electronics, a Treatise, H.Rabin and C.L.Tang, eds. (Academic, 1975), Vol. 1.

De Micheli, M.

Diamanti, E.

Dong, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Fejer, M. M.

Fiorentino, M.

Fujimura, M.

Gisin, N.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

Honjo, T.

Huang, J.

J. Huang, “Multifunctional optical signal-processing devices in periodically poled lithium niobate,” Ph.D. dissertation (Stanford University, 2007).

Jelezko, F.

F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kamada, H.

Kimble, H. J.

H. J. Kimble, Nature 453, 1023 (2008).
[CrossRef] [PubMed]

Kumar, P.

Kurz, J. R.

Kwiat, P. G.

Langrock, C.

Li, Y.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides(Academic, 1974).

Miyazawa, H.

Munro, M. W.

Nishida, Y.

Ostrowsky, D. B.

Ou, Z. Y.

Z. Y. Ou, Phys. Rev. A 78, 023819 (2008).
[CrossRef]

Pan, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Parameswaran, K. R.

Rastogi, V.

Roberts, T. D.

Roussev, R. V.

Route, R. K.

Shenoy, M. R.

Spillane, S. M.

Suzuki, H.

Tadanaga, O.

Takesue, H.

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

Thyagarajan, K.

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

Tokura, Y.

VanDevender, A. P.

Wong, F. N. C.

Wrachtrup, J.

F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).
[CrossRef]

Wu, E.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Yamamoto, Y.

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

Zeng, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (2)

H. J. Kimble, Nature 453, 1023 (2008).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (1)

Z. Y. Ou, Phys. Rev. A 78, 023819 (2008).
[CrossRef]

Phys. Status Solidi A (1)

F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).
[CrossRef]

Other (3)

D. Marcuse, Theory of Dielectric Optical Waveguides(Academic, 1974).

R. L. Byer in Quantum Electronics, a Treatise, H.Rabin and C.L.Tang, eds. (Academic, 1975), Vol. 1.

J. Huang, “Multifunctional optical signal-processing devices in periodically poled lithium niobate,” Ph.D. dissertation (Stanford University, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of QFC between ω 1 and ω 2 , showing broadband parasitic SPDC of the pump due to the disorder-induced QPM pedestal. (b) Random duty-cycle errors in a nonideal QPM grating: δ l k = 0 , where δ l k = δ z k + 1 δ z k and δ z k = z k z k , 0 , where z k , 0 = k l .

Fig. 2
Fig. 2

DFG conversion efficiency versus P p (squares) and fit to Eq. (1) (solid line); SPDC noise-photon spectral density (NSD) d N 1 / d λ 1 (dots) and linear fit (dashed).

Fig. 3
Fig. 3

Contours of constant σ l / l required to achieve conversion efficiency η and noise-photon number spectral density d N 1 / d λ 1 , for a device with N D = 10 4 .

Fig. 4
Fig. 4

Schematic of long-λ-pumped QFC between ω 2 and ω 1 via cascaded conversion steps.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η n ^ 1 ( L ) n ^ 2 ( 0 ) = sin 2 ( η nor P p L ) ,
| g | 2 N 1 N 1 , pm = 1 N D [ 1 exp ( π 2 σ l 2 2 l 2 ) ] ,
( σ l l ) 2 = ( 2 N D n i λ i λ 1 2 π 2 n 3 λ 3 c ) d N 1 d λ 1 r sin 1 η ,

Metrics