Abstract

We present a coherent-population-trapping-based scheme to attain subnanoscale resolution for microscopy. We use three-level atoms coupled to an amplitude modulated probe field and a spatially dependent (standing-wave or Laguerre–Gaussian) coupling field. The probe field modulation allows us to tap into the steep dispersion normally associated with electromagnetically induced transparency and offers subnanometer resolution using optical fields.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale resolution for fluorescence microscopy via adiabatic passage

Juan Luis Rubio, Daniel Viscor, Veronica Ahufinger, and Jordi Mompart
Opt. Express 21(19) 22139-22144 (2013)

Resolution enhancement of ghost imaging in atom vapor

Mingtao Cao, Xin Yang, Jinwen Wang, Shuwei Qiu, Dong Wei, Hong Gao, and Fuli Li
Opt. Lett. 41(22) 5349-5352 (2016)

Low-light-level ladder-type electromagnetically induced transparency and two-photon absorption

Zong-Syun He, Jing-Yuan Su, Hong-Ren Chen, Wei-Fu Chen, Meng-Huang Sie, Jyun-Yan Ye, and Chin-Chun Tsai
J. Opt. Soc. Am. B 31(10) 2485-2490 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription