Abstract

We describe a simple and universal method for absolute optimization of output power from optical oscillators using interferometry. By incorporating an antiresonant ring interferometer in one arm of the oscillator cavity, simple adjustments to the interferometer provide continuously variable output coupling over a broad spectral range and under any operating conditions. We demonstrate the technique using a femtosecond optical parametric oscillator (OPO), where we show continuously adjustable output coupling from 1% to 60%. By operating the OPO under an optimized output coupling of ~30%, we obtain ~200 mW of extracted power, more than twice that with an ~4% conventional output coupler, across the full tuning range. We also show that the technique has no detrimental effect on the spatiotemporal characteristics of the output, with the extracted signal exhibiting a Gaussian beam profile and near-transform-limited pulse durations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Steele, W. C. Davis, and R. L. Treuthart, Appl. Opt. 5, 5 (1966).
    [CrossRef] [PubMed]
  2. R. Ulrich, T. J. Bridges, and M. A. Pollack, Appl. Opt. 9, 2511 (1970).
    [CrossRef] [PubMed]
  3. R. L. Byer and V. R. Costich, Appl. Opt. 6, 578 (1967).
    [CrossRef] [PubMed]
  4. M. Couture and M. Piche, Appl. Opt. 26, 2510 (1987).
    [CrossRef] [PubMed]
  5. M. Keselbrener and S. Ruschin, Opt. Mater. 13, 97 (1999).
    [CrossRef]
  6. G. Sagnac, C. R. Acad. Sci 157, 1410 (1913).
  7. A. E. Siegman, IEEE J. Quantum Electron. 9, 247 (1973).
    [CrossRef]
  8. A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
    [CrossRef]
  9. D. Findlay and R. A. Clay, Phys. Lett. 20, 277 (1966).
    [CrossRef]
  10. A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, Opt. Lett. 33, 2650 (2008).
    [CrossRef] [PubMed]

2008

2000

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

1999

M. Keselbrener and S. Ruschin, Opt. Mater. 13, 97 (1999).
[CrossRef]

1987

1973

A. E. Siegman, IEEE J. Quantum Electron. 9, 247 (1973).
[CrossRef]

1970

1967

1966

1913

G. Sagnac, C. R. Acad. Sci 157, 1410 (1913).

Bridges, T. J.

Byer, R. L.

Clay, R. A.

D. Findlay and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Costich, V. R.

Couture, M.

Davis, W. C.

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Findlay, D.

D. Findlay and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Keselbrener, M.

M. Keselbrener and S. Ruschin, Opt. Mater. 13, 97 (1999).
[CrossRef]

Kokabee, O.

Piche, M.

Pollack, M. A.

Ruschin, S.

M. Keselbrener and S. Ruschin, Opt. Mater. 13, 97 (1999).
[CrossRef]

Sagnac, G.

G. Sagnac, C. R. Acad. Sci 157, 1410 (1913).

Siegman, A. E.

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

A. E. Siegman, IEEE J. Quantum Electron. 9, 247 (1973).
[CrossRef]

Steele, E. L.

Treuthart, R. L.

Ulrich, R.

Appl. Opt.

C. R. Acad. Sci

G. Sagnac, C. R. Acad. Sci 157, 1410 (1913).

IEEE J. Quantum Electron.

A. E. Siegman, IEEE J. Quantum Electron. 9, 247 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

Opt. Lett.

Opt. Mater.

M. Keselbrener and S. Ruschin, Opt. Mater. 13, 97 (1999).
[CrossRef]

Phys. Lett.

D. Findlay and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Antiresonant ring (ARR) interferometer: The input optical field, E in , incident at angle θ BS on the beam splitter (BS) is split into the clockwise (dotted line) and counterclockwise (dashed line) beams. After propagation inside the ring and transmission or reflection by the beam splitter again, the new pairs of fields, ( E r ccw , E t cw ) and ( E t ccw , E r cw ) , interfere, giving rise to the reflected, E r = E r ccw + E t cw , and transmitted, E t = E t ccw + E r cw , output fields.

Fig. 2
Fig. 2

Experimental configuration of the OPO [10], with the ARR in one arm of the cavity. The ARR consists of a commercial 25 mm diameter thin-film beam splitter (BS) coated for 1 2 μm and two plane high reflectors (M4 and M5). All mirrors are highly reflecting ( R > 99 % ) over 1.35 1.55 μm . The total OPO cavity length comprises a linear part, L linear = 177.3 cm , and a ring, L ring = 40 cm , and is given by L opo = 2 L linear + L ring = c / RR , where c is the speed of light and RR = 76 MHz is the pump laser repetition rate.

Fig. 3
Fig. 3

(a) ARR output coupling dependence on the beamsplitter angle. (b) Extracted output power through (I) ARR. Extracted output power with cavity containing ARR and a glass plate through (II) ARR and (III) glass plate.

Fig. 4
Fig. 4

(a) Variation of the ARR output coupling and the conventional output coupler with wavelength. (b) Typical spectra of the extracted signal from the ARR. (c) OPO output power from the ARR with a beamsplitter at 52 ° and from the conventional output coupler.

Fig. 5
Fig. 5

(a) Spectrum of OPO signal pulses at 1550 nm with a bandwidth of 19 nm . (b) Interferometric autocorrelation and corresponding intensity average. The duration of 270 fs results in near-transform-limit pulses with a time-bandwidth product of Δ ν Δ τ 0.64 (assuming sech 2 pulse shape). (c) Spatial beam profile measurement (dots) and the Gaussian fit (solid line).

Metrics