Abstract

We designed, fabricated, and characterized three-level transmission gratings in the resonance domain with reduced shadowing losses based on a three-wave interference mechanism. A new technological approach allows for fabrication of homogeneous and large area multilevel gratings without spurious artifacts. To our knowledge, the measured efficiency of 86% exhibits the largest value yet reported for a multilevel transmission grating in the resonance domain close to normal incidence.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, and J. Ruoff, Opt. Lett. 31, 3638 (2006).
    [CrossRef] [PubMed]
  2. S. Astilean, P. Lalanne, and P. Chavel, Opt. Lett. 23, 552 (1998).
    [CrossRef]
  3. P. Lalanne, J. Opt. Soc. Am. A 16, 2517 (1999).
    [CrossRef]
  4. M. S. Laure Lee, P. Lalanne, and J.-C. Rodier, Opt. Lett. 25, 1690 (2000).
    [CrossRef]
  5. E. Noponen, J. Turunen, and A. Vasara, Appl. Opt. 31, 5910 (1992).
    [CrossRef] [PubMed]
  6. J. M. Finlan, K. M. Flood, and R. J. Bojko, Opt. Eng. 34, 3560 (1995).
    [CrossRef]
  7. G. J. Swanson, MIT Tech. Rep. 914 (MIT Cambridge, Mass., 1989).
  8. M. B. Stern, in Microoptics: Elements, Systems and Applications, H.P.Herzig ed. (Taylor & Francis, 1997), pp 53–85.
  9. U. D. Zeitner and E. B. Kley, Proc. SPIE 6290, 629009(2006).
    [CrossRef]
  10. M. Kuittinen and J. Turunen, Opt. Commun. 142, 14 (1997).
    [CrossRef]

2006 (2)

2000 (1)

1999 (1)

1998 (1)

1997 (1)

M. Kuittinen and J. Turunen, Opt. Commun. 142, 14 (1997).
[CrossRef]

1995 (1)

J. M. Finlan, K. M. Flood, and R. J. Bojko, Opt. Eng. 34, 3560 (1995).
[CrossRef]

1992 (1)

Astilean, S.

Bojko, R. J.

J. M. Finlan, K. M. Flood, and R. J. Bojko, Opt. Eng. 34, 3560 (1995).
[CrossRef]

Brunner, R.

Chavel, P.

Finlan, J. M.

J. M. Finlan, K. M. Flood, and R. J. Bojko, Opt. Eng. 34, 3560 (1995).
[CrossRef]

Flood, K. M.

J. M. Finlan, K. M. Flood, and R. J. Bojko, Opt. Eng. 34, 3560 (1995).
[CrossRef]

Kley, E. B.

U. D. Zeitner and E. B. Kley, Proc. SPIE 6290, 629009(2006).
[CrossRef]

Kuittinen, M.

M. Kuittinen and J. Turunen, Opt. Commun. 142, 14 (1997).
[CrossRef]

Lalanne, P.

Laure Lee, M. S.

Noponen, E.

Pätz, D.

Rodier, J.-C.

Ruoff, J.

Sandfuchs, O.

Sinzinger, S.

Stern, M. B.

M. B. Stern, in Microoptics: Elements, Systems and Applications, H.P.Herzig ed. (Taylor & Francis, 1997), pp 53–85.

Swanson, G. J.

G. J. Swanson, MIT Tech. Rep. 914 (MIT Cambridge, Mass., 1989).

Turunen, J.

Vasara, A.

Zeitner, U. D.

U. D. Zeitner and E. B. Kley, Proc. SPIE 6290, 629009(2006).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

M. Kuittinen and J. Turunen, Opt. Commun. 142, 14 (1997).
[CrossRef]

Opt. Eng. (1)

J. M. Finlan, K. M. Flood, and R. J. Bojko, Opt. Eng. 34, 3560 (1995).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

U. D. Zeitner and E. B. Kley, Proc. SPIE 6290, 629009(2006).
[CrossRef]

Other (2)

G. J. Swanson, MIT Tech. Rep. 914 (MIT Cambridge, Mass., 1989).

M. B. Stern, in Microoptics: Elements, Systems and Applications, H.P.Herzig ed. (Taylor & Francis, 1997), pp 53–85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

-1st-order efficiency of different kinds of optimized fused-silica gratings versus the incidence angle: Three-level (bold curve), four-level (thin curve) as well as two-ridge binary (dashed curve) gratings, optimized for normal incidence; one-ridge binary grating (dotted curve), optimized for the Littrow angle; rhomboids, three-wave model for the three-level grating. Other parameters: wavelength, 633 nm ; period, 1266 nm .

Fig. 2
Fig. 2

Optimized three-level grating: (a) sketch of the structure, (b) illustration of the three-wave model for explaining the grating effect by means of two consecutive beam-splitting mechanisms, and diffraction efficiencies versus (c) level depths and (d) level widths.

Fig. 3
Fig. 3

Illustration of the fabrication of the second grating level including a planarization layer: (a) layer system before the second exposure and (b) sequence of fabrication steps.

Fig. 4
Fig. 4

Grating characterization: (a) homogeneity—spatial mapping of the maximum -1st-order efficiency (ratio between first-order transmitted intensity and input intensity inside the substrate), (b) comparison of the measured and simulated efficiency, and (c) AFM characterization of the grating profile.

Metrics