Abstract

We report on dissipative soliton (DS) generation in an Yb-doped (YDF) fiber laser passively mode locked with the nonlinear polarization rotation (NPR) technique. We found that even without the insertion of a physical bandpass filter in the cavity, not only could DSs be automatically formed in the laser but also the formed DSs have a spectral bandwidth that is far narrower than the Yb-fiber gain bandwidth. Numerical simulations well reproduced the experimental observations. Our results suggest that a physical intracavity bandpass filter is not a crucial component for the generation of DSs in all-normal-dispersion YDF lasers mode locked with the NPR technique.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  2. I. N. Duling, III, Opt. Lett. 16, 539 (1991).
    [CrossRef]
  3. L. M. Zhao, D. Y. Tang, and J. Wu, Opt. Lett. 31, 1788 (2006).
    [CrossRef] [PubMed]
  4. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  5. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, Opt. Express 15, 10725(2007).
    [CrossRef] [PubMed]
  6. B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, Opt. Lett. 34, 1585 (2009).
    [CrossRef] [PubMed]
  7. A. Chong, W. H. Renninger, and F. W. Wise, J. Opt. Soc. Am. B 25, 140 (2008).
    [CrossRef]
  8. W. H. Renninger, A. Chong, and F. Wise, Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  9. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, J. Opt. Soc. Am. B 25, 1763 (2008).
    [CrossRef]
  10. K. Özgören and F. Ö. Ilday, Opt. Lett. 35, 1296 (2010).
    [CrossRef] [PubMed]
  11. L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang, Appl. Opt. 48, 5131 (2009).
    [CrossRef] [PubMed]
  12. W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, J. Opt. Soc. Am. B 17, 28 (2000).
    [CrossRef]
  13. V. P. Kalosha, L. Chen, and X. Bao, Opt. Express 14, 4935 (2006).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

2008 (3)

2007 (1)

2006 (3)

2000 (1)

1991 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Bale, B. G.

Bao, X.

Baumgartl, M.

Buckley, J.

Chen, L.

Chong, A.

Demokan, M. S.

Duling, I. N.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Hideur, A.

Ilday, F. Ö.

Kalosha, V. P.

Kutz, J. N.

Limpert, J.

Lu, C.

Man, W. S.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Ortaç, B.

Özgören, K.

Renninger, W.

Renninger, W. H.

Schmidt, O.

Schreiber, T.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Tam, H. Y.

Tang, D. Y.

Tünnermann, A.

Wai, P. K. A.

Wise, F.

Wise, F. W.

Wu, J.

Zhao, L. M.

Supplementary Material (1)

» Media 1: MOV (2000 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the fiber laser: P, polarizer.

Fig. 2
Fig. 2

(a) Typical optical spectrum and (b) corresponding pulse profile of the generated DSs (inset left, pulse train; inset right, rf spectrum).

Fig. 3
Fig. 3

Variation of the optical spectrum with cavity birefringence under fixed pump power.

Fig. 4
Fig. 4

(a) Numerically simulated optical spectrum and (b) corresponding pulse profile of the DSs versus the CLPDB change. Media 1 ( 2000 KB ) shows the compressed pulse profiles versus compensation dispersion numerically calculated. The DS obtained at CLPDB = 1.6 π was used as the initial pulse.

Fig. 5
Fig. 5

Cavity transmission versus wavelength shift under different cavity birefringence. The central wavelength is at 1064 nm , and the CLPDB is 1.6 π .

Metrics