Abstract

We report on dissipative soliton (DS) generation in an Yb-doped (YDF) fiber laser passively mode locked with the nonlinear polarization rotation (NPR) technique. We found that even without the insertion of a physical bandpass filter in the cavity, not only could DSs be automatically formed in the laser but also the formed DSs have a spectral bandwidth that is far narrower than the Yb-fiber gain bandwidth. Numerical simulations well reproduced the experimental observations. Our results suggest that a physical intracavity bandpass filter is not a crucial component for the generation of DSs in all-normal-dispersion YDF lasers mode locked with the NPR technique.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  2. I. N. Duling, III, Opt. Lett. 16, 539 (1991).
    [CrossRef]
  3. L. M. Zhao, D. Y. Tang, and J. Wu, Opt. Lett. 31, 1788 (2006).
    [CrossRef] [PubMed]
  4. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  5. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, Opt. Express 15, 10725(2007).
    [CrossRef] [PubMed]
  6. B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, Opt. Lett. 34, 1585 (2009).
    [CrossRef] [PubMed]
  7. A. Chong, W. H. Renninger, and F. W. Wise, J. Opt. Soc. Am. B 25, 140 (2008).
    [CrossRef]
  8. W. H. Renninger, A. Chong, and F. Wise, Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  9. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, J. Opt. Soc. Am. B 25, 1763 (2008).
    [CrossRef]
  10. K. Özgören and F. Ö. Ilday, Opt. Lett. 35, 1296 (2010).
    [CrossRef] [PubMed]
  11. L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang, Appl. Opt. 48, 5131 (2009).
    [CrossRef] [PubMed]
  12. W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, J. Opt. Soc. Am. B 17, 28 (2000).
    [CrossRef]
  13. V. P. Kalosha, L. Chen, and X. Bao, Opt. Express 14, 4935 (2006).
    [CrossRef] [PubMed]

2010

2009

2008

2007

2006

2000

1991

1980

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Bale, B. G.

Bao, X.

Baumgartl, M.

Buckley, J.

Chen, L.

Chong, A.

Demokan, M. S.

Duling, I. N.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Hideur, A.

Ilday, F. Ö.

Kalosha, V. P.

Kutz, J. N.

Limpert, J.

Lu, C.

Man, W. S.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Ortaç, B.

Özgören, K.

Renninger, W.

Renninger, W. H.

Schmidt, O.

Schreiber, T.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Tam, H. Y.

Tang, D. Y.

Tünnermann, A.

Wai, P. K. A.

Wise, F.

Wise, F. W.

Wu, J.

Zhao, L. M.

Supplementary Material (1)

» Media 1: MOV (2000 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the fiber laser: P, polarizer.

Fig. 2
Fig. 2

(a) Typical optical spectrum and (b) corresponding pulse profile of the generated DSs (inset left, pulse train; inset right, rf spectrum).

Fig. 3
Fig. 3

Variation of the optical spectrum with cavity birefringence under fixed pump power.

Fig. 4
Fig. 4

(a) Numerically simulated optical spectrum and (b) corresponding pulse profile of the DSs versus the CLPDB change. Media 1 ( 2000 KB ) shows the compressed pulse profiles versus compensation dispersion numerically calculated. The DS obtained at CLPDB = 1.6 π was used as the initial pulse.

Fig. 5
Fig. 5

Cavity transmission versus wavelength shift under different cavity birefringence. The central wavelength is at 1064 nm , and the CLPDB is 1.6 π .

Metrics