Abstract

We present an on-chip arrayed waveguide grating (AWG) sensor based on the confocal arrangement of two AWGs, one acting as focusing illuminator and one as signal collector. The chip can be close to, or in direct contact with, a sample, e.g., biological tissue, without the need of external optics. The collection efficiency of our device can be more than 1 order of magnitude higher than that of a standard AWG, in which light is collected by one input channel. Experimental results on the collection efficiency and volume are presented, together with a demonstration of multiwavelength imaging.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription