Abstract

We investigate scattering features of tightly focused singular beams by placing a cylindrical nanowire in the vicinity of a line phase singularity. Applying an illumination wavelength corresponding to silver cylinder plasmonic resonance, we compare the scattering response with that of a perfect conductor. The rigorous modeling employs a 2D version of the Richards–Wolf focusing method and the source model technique. It is found that a cylinder with a plasmonic resonance produces a strong scattering response by deflecting the power flow toward the optical singularity region, where otherwise the power approaches zero.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [CrossRef]
  2. L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge U. Press, 2006).
  3. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, Phys. Rev. B 64, 235402 (2001).
    [CrossRef]
  4. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
    [CrossRef]
  5. K. F. Ren, G. Grehan, and G. Gouesbet, J. Opt. Soc. Am. A 14, 3014 (1997).
    [CrossRef]
  6. H. Zhang and Y. Han, J. Opt. Soc. Am. B 25, 131 (2008).
    [CrossRef]
  7. C. Rockstuhl and H. P. Herzig, Opt. Lett. 29, 2181 (2004).
    [CrossRef] [PubMed]
  8. U. Kreibig, J. Phys. F 4, 999 (1974).
    [CrossRef]
  9. A. Normatov, B. Spektor, and J. Shamir, Opt. Eng. 48, 028001 (2009).
    [CrossRef]
  10. Y. Leviatan and A. Boag, IEEE Trans. Ant. Prop. 35, 1119 (1987).
    [CrossRef]
  11. B. S. Luk’yanchuk and V. Ternovsky, Phys. Rev. B 73, 235432 (2006).
    [CrossRef]

2009 (1)

A. Normatov, B. Spektor, and J. Shamir, Opt. Eng. 48, 028001 (2009).
[CrossRef]

2008 (1)

2006 (1)

B. S. Luk’yanchuk and V. Ternovsky, Phys. Rev. B 73, 235432 (2006).
[CrossRef]

2004 (1)

2001 (1)

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, Phys. Rev. B 64, 235402 (2001).
[CrossRef]

1997 (1)

1995 (1)

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

1987 (1)

Y. Leviatan and A. Boag, IEEE Trans. Ant. Prop. 35, 1119 (1987).
[CrossRef]

1974 (1)

U. Kreibig, J. Phys. F 4, 999 (1974).
[CrossRef]

Basistiy, I. V.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

Boag, A.

Y. Leviatan and A. Boag, IEEE Trans. Ant. Prop. 35, 1119 (1987).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Gouesbet, G.

Grehan, G.

Han, Y.

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge U. Press, 2006).

Herzig, H. P.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Kreibig, U.

U. Kreibig, J. Phys. F 4, 999 (1974).
[CrossRef]

Leviatan, Y.

Y. Leviatan and A. Boag, IEEE Trans. Ant. Prop. 35, 1119 (1987).
[CrossRef]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk and V. Ternovsky, Phys. Rev. B 73, 235432 (2006).
[CrossRef]

Martin, O. J. F.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Normatov, A.

A. Normatov, B. Spektor, and J. Shamir, Opt. Eng. 48, 028001 (2009).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge U. Press, 2006).

Ren, K. F.

Rockstuhl, C.

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Shamir, J.

A. Normatov, B. Spektor, and J. Shamir, Opt. Eng. 48, 028001 (2009).
[CrossRef]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Soskin, M. S.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

Spektor, B.

A. Normatov, B. Spektor, and J. Shamir, Opt. Eng. 48, 028001 (2009).
[CrossRef]

Ternovsky, V.

B. S. Luk’yanchuk and V. Ternovsky, Phys. Rev. B 73, 235432 (2006).
[CrossRef]

Vasnetsov, M. V.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

Zhang, H.

IEEE Trans. Ant. Prop. (1)

Y. Leviatan and A. Boag, IEEE Trans. Ant. Prop. 35, 1119 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. F (1)

U. Kreibig, J. Phys. F 4, 999 (1974).
[CrossRef]

Opt. Commun. (1)

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

Opt. Eng. (1)

A. Normatov, B. Spektor, and J. Shamir, Opt. Eng. 48, 028001 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

B. S. Luk’yanchuk and V. Ternovsky, Phys. Rev. B 73, 235432 (2006).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge U. Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical system schematic.

Fig. 2
Fig. 2

Tightly focused singular beam power flow density in case of scattering by a perfectly conducting nanowire 30 nm in diameter, normalized by the maximum value of Fig. 3. The spots indicate nearly zero density. Arrow size is proportional to power flow density, and arrow direction corresponds to power flow direction at the arrow origin.

Fig. 3
Fig. 3

Same as Fig. 2 but for the case of scattering by a silver nanowire 30 nm in diameter. The result is normalized by the maximum power flow density.

Fig. 4
Fig. 4

Magnification of the silver nanowire of Fig. 3.

Fig. 5
Fig. 5

Tightly focused singular beam— E z field component amplitude. The values are normalized by the maximum of the E x amplitude.

Fig. 6
Fig. 6

Scattered far-field amplitude for the silver nanowire—black (red) curve, and perfect con ductor nanowire—gray (green) curve. The solid curves correspond to NA = 0.87 , and the dotted curves correspond to NA = 0.2 .

Metrics