Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces

Not Accessible

Your library or personal account may give you access

Abstract

The optical damage threshold of indentation-induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damage testing, as well as by optical, secondary electron, and photoluminescence microscopy. Localized polishing, chemical leaching, and the control of indentation morphology were used to isolate the structural features that limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355nm, 3ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35J/cm2. Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica

Feng Shi, Yaoyu Zhong, Yifan Dai, Xiaoqiang Peng, Mingjin Xu, and Tingting Sui
Opt. Express 24(18) 20842-20854 (2016)

Detailed near-surface nanoscale damage precursor measurement and characterization of fused silica optics assisted by ion beam etching

Yaoyu Zhong, Feng Shi, Ye Tian, Yifan Dai, Ci Song, Wanli Zhang, and Zhifan Lin
Opt. Express 27(8) 10826-10838 (2019)

High fluence laser damage precursors and their mitigation in fused silica

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli
Opt. Express 22(5) 5839-5851 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved