Abstract

We study the physics of a new type of subwavelength nanocavities. They are based on U-shaped metal–insulator–metal waveguides supporting the excitation of surface plasmon polaritons. The nanocavity arrays are excited by plane waves at either a normal or oblique incidence. Because of their finite length, discrete modes emerge within the nanocavity. We show that the excitation symmetry with respect to the cavity ends permits the observation of even and odd modes. Our investigations include near- and far-field simulations and predict a strong spectral far-field response of the comparably small nanoresonators. The strong near-field enhancement observed in the cavity at resonance might be suitable to increase the efficiency of nonlinear optical effects and quantum analogies and might facilitate the development of optical elements, such as active plasmonic devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
    [CrossRef] [PubMed]
  2. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, Nature Photon. 3, 55 (2008).
    [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
    [CrossRef] [PubMed]
  4. X. S. Lin and X. G. Huang, Opt. Lett. 33, 2874 (2008).
    [CrossRef] [PubMed]
  5. H. T. Miyazaki, Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef] [PubMed]
  6. E. Feigenbaum and M. Orenstein, J. Lightwave Technol. 25, 2547 (2007).
    [CrossRef]
  7. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901(2008).
    [CrossRef] [PubMed]
  8. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
    [CrossRef] [PubMed]
  9. C. Hu, L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, Appl. Phys. B 96, 439 (2009).
    [CrossRef]
  10. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
    [CrossRef] [PubMed]
  11. P. Hansen, L. Hesselink, and B. Leen, Opt. Lett. 32, 1737 (2007).
    [CrossRef] [PubMed]
  12. V. B. Zon, J. Opt. Soc. Am. B 24, 1960 (2007).
    [CrossRef]
  13. A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, Opt. Lett. 32, 2354(2007).
    [CrossRef] [PubMed]
  14. C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).
    [CrossRef] [PubMed]
  15. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).
    [CrossRef]
  16. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  17. F. J. Torcal-Milla, L. M. Sanchez-Brea, and E. Bernabeu, Opt. Express 16, 19757 (2008).
    [CrossRef] [PubMed]
  18. V. Giannini, J. A. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, J. Opt. Soc. Am. B 26, 1569 (2009).
    [CrossRef]
  19. H. Yin, C. Xu, and P. M. Hui, Appl. Phys. Lett. 94, 221102 (2009).
    [CrossRef]

2009 (5)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

C. Hu, L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, Appl. Phys. B 96, 439 (2009).
[CrossRef]

V. Giannini, J. A. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, J. Opt. Soc. Am. B 26, 1569 (2009).
[CrossRef]

H. Yin, C. Xu, and P. M. Hui, Appl. Phys. Lett. 94, 221102 (2009).
[CrossRef]

2008 (6)

F. J. Torcal-Milla, L. M. Sanchez-Brea, and E. Bernabeu, Opt. Express 16, 19757 (2008).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901(2008).
[CrossRef] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).
[CrossRef] [PubMed]

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, Nature Photon. 3, 55 (2008).
[CrossRef]

X. S. Lin and X. G. Huang, Opt. Lett. 33, 2874 (2008).
[CrossRef] [PubMed]

2007 (5)

2006 (2)

H. T. Miyazaki, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

1997 (1)

Atwater, H. A.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Bernabeu, E.

Bozhevolnyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901(2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Chen, X.

C. Hu, L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, Appl. Phys. B 96, 439 (2009).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Degiron, A.

Dellagiacoma, C.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Dionne, J. A.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Feigenbaum, E.

Feng, Q.

C. Hu, L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, Appl. Phys. B 96, 439 (2009).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901(2008).
[CrossRef] [PubMed]

Giannini, V.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Hansen, P.

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Hesselink, L.

Hu, C.

C. Hu, L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, Appl. Phys. B 96, 439 (2009).
[CrossRef]

Huang, X. G.

Hui, P. M.

H. Yin, C. Xu, and P. M. Hui, Appl. Phys. Lett. 94, 221102 (2009).
[CrossRef]

Kasemo, B.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).
[CrossRef] [PubMed]

Kuipers, L.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).
[CrossRef] [PubMed]

Leen, B.

Li, L.

Lin, X. S.

Liu, L.

C. Hu, L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, Appl. Phys. B 96, 439 (2009).
[CrossRef]

Luo, X.

C. Hu, L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, Appl. Phys. B 96, 439 (2009).
[CrossRef]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, Nature Photon. 3, 55 (2008).
[CrossRef]

Maier, S. A.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Martin, O. J. F.

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901(2008).
[CrossRef] [PubMed]

McIlhargey, J. G.

Miyazaki, H. T.

H. T. Miyazaki, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901(2008).
[CrossRef] [PubMed]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Muskens, O. L.

Nordlander, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Orenstein, M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Polman, A.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Rivas, J. G.

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901(2008).
[CrossRef] [PubMed]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, Nature Photon. 3, 55 (2008).
[CrossRef]

Sanchez-Brea, L. M.

Sánchez-Gil, J. A.

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).
[CrossRef] [PubMed]

Shvets, G.

Smith, D. R.

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, Nature Photon. 3, 55 (2008).
[CrossRef]

Torcal-Milla, F. J.

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Verhagen, E.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Xu, C.

H. Yin, C. Xu, and P. M. Hui, Appl. Phys. Lett. 94, 221102 (2009).
[CrossRef]

Yin, H.

H. Yin, C. Xu, and P. M. Hui, Appl. Phys. Lett. 94, 221102 (2009).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Zhao, Z.

C. Hu, L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, Appl. Phys. B 96, 439 (2009).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, Nature Photon. 3, 55 (2008).
[CrossRef]

Zon, V. B.

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (1)

C. Hu, L. Liu, Z. Zhao, X. Chen, Q. Feng, and X. Luo, Appl. Phys. B 96, 439 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

H. Yin, C. Xu, and P. M. Hui, Appl. Phys. Lett. 94, 221102 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nano Lett. (3)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, Nano Lett. 8, 1461 (2008).
[CrossRef] [PubMed]

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Nature Photon. (1)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, Nature Photon. 3, 55 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (3)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901(2008).
[CrossRef] [PubMed]

H. T. Miyazaki, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Different steps of the proposed fabrication process: the process starts with (a) the fabrication of an initial Al wire grating. It is followed by (b) the oxidation process. In the last step, (c) the entire structure is metallized to obtain the U-shaped nanocavities.

Fig. 2
Fig. 2

Calculated far-field spectra (reflection and absorption; transmission is zero) for (a) normal and (b) oblique ( 45 ° ) incidence. (c) Simulation of the modulus of the magnetic field for the first four modes (0–3) observed in the spectra.

Fig. 3
Fig. 3

(a) Calculated far-field spectra for two U-shaped cavities with a different shape but with the same total cavity length (curves and circles). The initial structure, as pres ented in Fig. 2, is represented by the solid and dashed curves. (b) Analytical resonance dependence (dashed curve) according to Eq. (1) together with the numerically estimated resonance positions (triangles and squares).

Fig. 4
Fig. 4

(a) Reflection spectra for three differing gap widths: 5 nm (blue solid curve), 10 nm (black dashed curve), and 20 nm (red dotted curve). (b) Dispersion of the different even modes for normal illumination dependent on the MIM gap thickness. Rigorous results are indicated by symbols, whereas predictions from the MIM dispersion relation are sketched by dashed curves.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tanh ( k d ( ω ) δ 2 ) = ε d ( ω ) k m ( ω ) ε m ( ω ) k d ( ω ) , k m , d ( ω ) = k gap 2 ( ω ) ε m , d ( ω ) ω 2 c 2 .

Metrics