Abstract

We describe an optical beam converter for an efficient transformation of Gaussian femtosecond laser beams to single- or double-charge vortex beams. The device achieves a conversion efficiency of 75% for single- and 50% for double-charge vortex beams and can operate with high-energy broad bandwidth pulses. We also show that the topological charge of a femtosecond vortex beam can be determined by analyzing its intensity distribution in the focal area of a cylindrical lens.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, Opt. Express 18, 2144 (2010).
    [CrossRef] [PubMed]
  2. A. Picón, J. Mompart, J. R. Vázquez de Aldana, L. Plaja, G. F. Calvo, and L. Roso, Opt. Express 18, 3660 (2010).
    [CrossRef] [PubMed]
  3. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, Opt. Express 13, 7599 (2005).
    [CrossRef] [PubMed]
  4. K. Bezuhanov, A. Dreischuh, G. Paulus, M. G. Schätzel, H. Walther, D. Neshev, W. Królikowski, and Y. Kivshar, J. Opt. Soc. Am. B 23, 26 (2006).
    [CrossRef]
  5. A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, Opt. Express 14, 3724 (2006).
    [CrossRef]
  6. Y. Tokizane, K. Oka, and R. Morita, Opt. Express 17, 14517 (2009).
    [CrossRef] [PubMed]
  7. F. Flossmann, U. Schwarz, M. Maier, and M. Dennis, Phys. Rev. Lett. 95, 253901 (2005).
    [CrossRef] [PubMed]
  8. A. Ciattoni, G. Cincotti, and C. Palma, J. Opt. Soc. Am. A 19, 792 (2002).
    [CrossRef]
  9. A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
    [CrossRef]
  10. M. R. Dennis, K. O’Holleran, and M. J. Padgett, Progress in Optics, E.Wolf, ed. (Elsevier, 2009), Vol. 52.
  11. E. Brasselet, Ya. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Yu. Kivshar, Opt. Lett. 34, 1021 (2009).
    [CrossRef] [PubMed]
  12. Ya. Izdebskaya, E. Brasselet, V. Shvedov, A. Desyatnikov, W. Krolikowski, and Yu. Kivshar, Opt. Express 17, 18196 (2009).
    [CrossRef] [PubMed]
  13. V. Denisenko, V. Shvedov, A. Desyatnikov, D. Neshev, W. Krolikowski, A. Volyar, M. Soskin, and Yu. Kivshar, Opt. Express 17, 23374 (2009).
    [CrossRef]
  14. Ya. Izdebskaya, V. Shvedov, and A. Volyar, Opt. Lett. 30, 2530 (2005).
    [CrossRef] [PubMed]

2010 (2)

2009 (4)

2006 (2)

2005 (3)

2003 (1)

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
[CrossRef]

2002 (1)

Bezuhanov, K.

Brasselet, E.

Calvo, G. F.

Chujo, K.

Ciattoni, A.

Cincotti, G.

Denisenko, V.

Dennis, M.

F. Flossmann, U. Schwarz, M. Maier, and M. Dennis, Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef] [PubMed]

Dennis, M. R.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Progress in Optics, E.Wolf, ed. (Elsevier, 2009), Vol. 52.

Desyatnikov, A.

Desyatnikov, A. S.

Dreischuh, A.

Fadeyeva, T.

Flossmann, F.

F. Flossmann, U. Schwarz, M. Maier, and M. Dennis, Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef] [PubMed]

Hamazaki, J.

Izdebskaya, Ya.

Kivshar, Y.

Kivshar, Y. S.

Kivshar, Yu.

Kobayashi, Y.

Krolikowski, W.

Królikowski, W.

Maier, M.

F. Flossmann, U. Schwarz, M. Maier, and M. Dennis, Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef] [PubMed]

Mariyenko, I. G.

Mompart, J.

Morita, R.

Neshev, D.

Neshev, D. N.

O’Holleran, K.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Progress in Optics, E.Wolf, ed. (Elsevier, 2009), Vol. 52.

Oka, K.

Omatsu, T.

Padgett, M. J.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Progress in Optics, E.Wolf, ed. (Elsevier, 2009), Vol. 52.

Palma, C.

Paulus, G.

Picón, A.

Plaja, L.

Roso, L.

Schätzel, M. G.

Schwarz, U.

F. Flossmann, U. Schwarz, M. Maier, and M. Dennis, Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef] [PubMed]

Shvedov, V.

Soskin, M.

Strohaber, J.

Tanda, S.

Tokizane, Y.

Uiterwaal, C. J. G. J.

Vázquez de Aldana, J. R.

Volyar, A.

Walther, H.

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (7)

Opt. Lett. (2)

Opt. Spectrosc. (1)

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 94, 235 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

F. Flossmann, U. Schwarz, M. Maier, and M. Dennis, Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef] [PubMed]

Other (1)

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Progress in Optics, E.Wolf, ed. (Elsevier, 2009), Vol. 52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for the generation of double-charge femtosecond vortex pulses: λ / 4 , achromatic quarter-wave plate; L1, negative lens; CR, uniaxial crystal; L2, positive lens; PBS, polarization beam splitter. Polarization states after each optical element are indicated by arrows. Bottom right: CCD image ( 4.2 × 4.2 mm 2 ) of a double-charge vortex recorded ~5 m after the converter.

Fig. 2
Fig. 2

Diagnostics of femtosecond vortex pulses after the converter in Fig. 1. Top, simulated behavior of a double-charge vortex at the focus of a positive cylindrical lens. Bottom, experimentally obtained images of femtosecond double-charge vortices 0.5 m after the converter (left) and their focal caustics (right). Horizontal size of all experimental images is 4.2 mm .

Fig. 3
Fig. 3

Experimental setup for the generation of single-charge femtosecond vortex pulses (the notations are as in Fig. 1). o denotes the optical axis of the crystal. Bottom right, CCD image ( 4.2 × 4.2 mm 2 ) of a single-charge vortex recorded 5 m after the converter.

Fig. 4
Fig. 4

Diagnostics of femtosecond vortex beam after the converter in Fig. 3. Top, simulated behavior of a single-charge vortex at the focus of a positive cylindrical lens. Bottom, experimental images of femtosecond single-charge vortices 0.5 m after the converter (left) and their focal caustics for the opposite topological charges (right). Horizontal size of all experimental images is 4.2 mm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ± i n E = 0.5 ( c ± ( G o + G e ) c ( ( r 2 + w 0 2 ξ o ) G o ( r 2 + w 0 2 ξ e ) G e ) exp ( ± 2 i φ ) r 2 ) ,

Metrics