Abstract

We propose a distributed external cloak without embedded antiobjects, which contains tunable windows and a cloaking area. It consists of closed and standalone systems whose positions and parameters can be separately controlled by the design purpose and folded geometry. Such an external cloak does not rely on either cloaked material or the concept of the antiobject [Phys. Rev. Lett. 102, 093901 (2009)] in the complementary material, and can thus be kept unchanged when different objects are considered. The object lies outside the cloak and is not blinded in terms of multiple open windows desired by specific designs. Such a distributed cloak enables us to conceal arbitrary objects of varying shape in center areas, which may exceed the inner boundary of a perfect closed cloak.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
    [CrossRef] [PubMed]
  2. W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, Appl. Phys. Lett. 93, 194102 (2008).
    [CrossRef]
  3. G. X. Yu, W. X. Jiang, and T. J. Cui, Appl. Phys. Lett. 94, 041904 (2009).
    [CrossRef]
  4. Y. You, G. W. Kattawar, and P. Yang, Opt. Express 17, 6591 (2009).
    [CrossRef] [PubMed]
  5. T. Y. Chen and C. N. Weng, Opt. Express 17, 8614 (2009).
    [CrossRef] [PubMed]
  6. M. Schmiele, C. Rockstuhl, and F. Lederer, Phys. Rev. A 79, 053854 (2009).
    [CrossRef]
  7. A. Nicolet, F. Zolla, and S. Guenneau, Opt. Lett. 33, 1584 (2008).
    [CrossRef] [PubMed]
  8. B. L. Zhang, H. S. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101(R) (2007).
  9. H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, Phys. Rev. Lett. 99, 063903 (2007).
    [CrossRef] [PubMed]
  10. C. W. Qiu, A. Novitsky, H. Ma, and S. B. Qu, Phys. Rev. E 80, 016604 (2009).
    [CrossRef]
  11. H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, Appl. Phys. Lett. 94, 103501 (2009).
    [CrossRef]
  12. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 093901 (2009).
    [CrossRef] [PubMed]
  13. H. Y. Chen and C. T. Chan, Opt. Lett. 34, 2649 (2009).
    [CrossRef] [PubMed]
  14. F. G. Vasquez, G. W. Milton, and D. Onofrei, Phys. Rev. Lett. 103, 073901 (2009).
    [CrossRef] [PubMed]
  15. P. Zhang, Y. Jin, and S. He, Appl. Phys. Lett. 93, 243502 (2008).
    [CrossRef]
  16. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, Opt. Express 15, 6314 (2007).
    [CrossRef] [PubMed]

2009

G. X. Yu, W. X. Jiang, and T. J. Cui, Appl. Phys. Lett. 94, 041904 (2009).
[CrossRef]

C. W. Qiu, A. Novitsky, H. Ma, and S. B. Qu, Phys. Rev. E 80, 016604 (2009).
[CrossRef]

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

M. Schmiele, C. Rockstuhl, and F. Lederer, Phys. Rev. A 79, 053854 (2009).
[CrossRef]

F. G. Vasquez, G. W. Milton, and D. Onofrei, Phys. Rev. Lett. 103, 073901 (2009).
[CrossRef] [PubMed]

Y. You, G. W. Kattawar, and P. Yang, Opt. Express 17, 6591 (2009).
[CrossRef] [PubMed]

T. Y. Chen and C. N. Weng, Opt. Express 17, 8614 (2009).
[CrossRef] [PubMed]

H. Y. Chen and C. T. Chan, Opt. Lett. 34, 2649 (2009).
[CrossRef] [PubMed]

2008

A. Nicolet, F. Zolla, and S. Guenneau, Opt. Lett. 33, 1584 (2008).
[CrossRef] [PubMed]

P. Zhang, Y. Jin, and S. He, Appl. Phys. Lett. 93, 243502 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

2007

B. L. Zhang, H. S. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101(R) (2007).

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, Opt. Express 15, 6314 (2007).
[CrossRef] [PubMed]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Botten, L. C.

Chan, C. T.

H. Y. Chen and C. T. Chan, Opt. Lett. 34, 2649 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Chen, H. S.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

B. L. Zhang, H. S. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101(R) (2007).

Chen, H. Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

H. Y. Chen and C. T. Chan, Opt. Lett. 34, 2649 (2009).
[CrossRef] [PubMed]

Chen, T. Y.

Cheng, Q.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

Cui, T. J.

G. X. Yu, W. X. Jiang, and T. J. Cui, Appl. Phys. Lett. 94, 041904 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

Guenneau, S.

He, S.

P. Zhang, Y. Jin, and S. He, Appl. Phys. Lett. 93, 243502 (2008).
[CrossRef]

Jiang, W. X.

G. X. Yu, W. X. Jiang, and T. J. Cui, Appl. Phys. Lett. 94, 041904 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

Jin, Y.

P. Zhang, Y. Jin, and S. He, Appl. Phys. Lett. 93, 243502 (2008).
[CrossRef]

Kattawar, G. W.

Kong, J. A.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

B. L. Zhang, H. S. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101(R) (2007).

Lai, Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Lederer, F.

M. Schmiele, C. Rockstuhl, and F. Lederer, Phys. Rev. A 79, 053854 (2009).
[CrossRef]

Liu, R.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

Luo, Y.

B. L. Zhang, H. S. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101(R) (2007).

Ma, H.

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

C. W. Qiu, A. Novitsky, H. Ma, and S. B. Qu, Phys. Rev. E 80, 016604 (2009).
[CrossRef]

McPhedran, R. C.

Milton, G. W.

Nicolet, A.

Nicorovici, N. A. P.

Novitsky, A.

C. W. Qiu, A. Novitsky, H. Ma, and S. B. Qu, Phys. Rev. E 80, 016604 (2009).
[CrossRef]

Onofrei, D.

F. G. Vasquez, G. W. Milton, and D. Onofrei, Phys. Rev. Lett. 103, 073901 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Qiu, C. W.

C. W. Qiu, A. Novitsky, H. Ma, and S. B. Qu, Phys. Rev. E 80, 016604 (2009).
[CrossRef]

Qu, S. B.

C. W. Qiu, A. Novitsky, H. Ma, and S. B. Qu, Phys. Rev. E 80, 016604 (2009).
[CrossRef]

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Ran, L.

B. L. Zhang, H. S. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101(R) (2007).

Rockstuhl, C.

M. Schmiele, C. Rockstuhl, and F. Lederer, Phys. Rev. A 79, 053854 (2009).
[CrossRef]

Schmiele, M.

M. Schmiele, C. Rockstuhl, and F. Lederer, Phys. Rev. A 79, 053854 (2009).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Smith, D. R.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Vasquez, F. G.

F. G. Vasquez, G. W. Milton, and D. Onofrei, Phys. Rev. Lett. 103, 073901 (2009).
[CrossRef] [PubMed]

Wang, J. F.

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Weng, C. N.

Wu, B. I.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Wu, B.-I.

B. L. Zhang, H. S. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101(R) (2007).

Xu, Z.

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Yang, P.

Yang, X. M.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

You, Y.

Yu, G. X.

G. X. Yu, W. X. Jiang, and T. J. Cui, Appl. Phys. Lett. 94, 041904 (2009).
[CrossRef]

Zhang, B. L.

B. L. Zhang, H. S. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101(R) (2007).

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Zhang, P.

P. Zhang, Y. Jin, and S. He, Appl. Phys. Lett. 93, 243502 (2008).
[CrossRef]

Zhang, Z. Q.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Zolla, F.

Appl. Phys. Lett.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

G. X. Yu, W. X. Jiang, and T. J. Cui, Appl. Phys. Lett. 94, 041904 (2009).
[CrossRef]

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

P. Zhang, Y. Jin, and S. He, Appl. Phys. Lett. 93, 243502 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Schmiele, C. Rockstuhl, and F. Lederer, Phys. Rev. A 79, 053854 (2009).
[CrossRef]

Phys. Rev. B

B. L. Zhang, H. S. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, Phys. Rev. B 76, 121101(R) (2007).

Phys. Rev. E

C. W. Qiu, A. Novitsky, H. Ma, and S. B. Qu, Phys. Rev. E 80, 016604 (2009).
[CrossRef]

Phys. Rev. Lett.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

F. G. Vasquez, G. W. Milton, and D. Onofrei, Phys. Rev. Lett. 103, 073901 (2009).
[CrossRef] [PubMed]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scheme of designing a reconfigurable distributed cloak. (a) Closed cloak [1] in virtual space is divided into N segments. (b) CCT is operated at ρ i , i.e., the distance vector from the origin to the center of the ith system; the core materials (region III, blue areas) are generated; and the ith sector in (a) is compressed into its image sector in region III ( r < a ). (c) Discontinuity induced by CCT is compensated by folded geometry, and the green areas, i.e., region II ( a < r < b ), denote complementary materials. (d) ith system in (c) is zoomed in. Hence, the distributed cloak is composed of N systems.

Fig. 2
Fig. 2

Verification of the design mechanism of distributed cloaks. (a) Bare PEC cylinder with half of a closed cloak [1], which is further divided into two subparts as a demonstration. (b) Distributed cloak composed of two systems designed by the scheme in Fig. 1 with the design parameters of a = 0.15 m , b = 0.2 m , and c = 0.3 m , and the axes of these two systems are located at ( 0.3 , 0 ) and (0, 0.3), respectively.

Fig. 3
Fig. 3

Snapshots of total electric fields for the distributed cloak composed of four systems. (a) Distributed cloak without windows follows the design of a = 0.1 + 0.05 2 m , b = 0.1 + 0.1 2 m , and c = 0.2 + 0.1 2 m . The centers of four systems are respectively located at ( ± 0.2 ± 0.1 2 , 0 ) and ( 0 , ± 0.2 ± 0.1 2 ) . (b) Distributed cloak with four windows is designed by a = 0.15 m , b = 0.2 m , and c = 0.3 m . The centers of four systems are respectively located at ( ± 0.3 , 0 ) and ( 0 , ± 0.3 ) .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| ρ ρ i | = c | ρ ρ i | / a , ϕ = ϕ , z = z ,
| ρ ( 2 ) ρ i | = a b c b ( | ρ ( 1 ) ρ i | b ) + b , ϕ ( 2 ) = ϕ ( 1 ) , z ( 2 ) = z ( 1 ) ,
ε image = μ image = A c · diag [ ε o r ( ρ ) , ε o ϕ ( ρ ) , ε o z ( ρ ) ] · A c T / det ( A c ) ,
ε core = μ core = A c A c T / det ( A c ) = diag [ 1 , 1 , ( c / a ) 2 ] .
ε r = μ r = k 1 | ρ ( 2 ) ρ i | k 2 b k 1 | ρ ( 2 ) ρ i | , ε ϕ = μ ϕ = k 1 | ρ ( 2 ) ρ i | k 1 | ρ ( 2 ) ρ i | k 2 b , ε z = μ z = k 1 ( k 1 | ρ ( 2 ) ρ i | k 2 b ) | ρ ( 2 ) ρ i | ,

Metrics