Abstract

We report the successful implementation of a surface-wave enabled dark-field aperture (SWEDA) directly on a complementary metal-oxide semiconductor sensor pixel (2.2μm). This SWEDA pixel allows predetection cancellation of a uniform coherent background. We show that the signal-to-noise ratio (SNR) of the SWEDA pixel is better than that of a single undressed pixel over a significant range of signal-to-background ratio (SBR). For a small SBR value (SBR=0.001, background intensity=3.96W/m2, integration time=5ms), we further demonstrate that a SWEDA pixel can detect a weak localized signal buried in a high background, while conventional postdetection background subtraction cannot (improved SNR=2.2 versus SNR=0.26).

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Narayanaswamy and O. Wolfbeis, Optical Sensors: Industrial, Environmental and Diagnostic Applications (Springer, 2004).
  2. G. Konstantatos and E. Sargent, Nature Nanotech. 5, 391 (2010).
    [CrossRef]
  3. R. Bhat, N. Panoiu, S. Brueck, and R. Osgood, Opt. Express 16, 4588 (2008).
    [CrossRef] [PubMed]
  4. G. Zheng, X. Cui, and C. Yang, Proc. Natl. Acad. Sci. USA 107, 9043 (2010).
    [CrossRef] [PubMed]
  5. P. Lalanne and J. Hugonin, Nature Phys. 2, 551 (2006).
    [CrossRef]
  6. X. Shi, L. Hesselink, and R. Thornton, Opt. Lett. 28, 1320 (2003).
    [CrossRef] [PubMed]
  7. E. Phizicky and S. Fields, Microbiol. Mol. Biol. Rev. 59, 94 (1995).
  8. X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
    [CrossRef] [PubMed]
  9. G. Zheng, Y. M. Wang, and C. Yang, Opt. Express 18, 16499 (2010).
    [CrossRef] [PubMed]
  10. N. Lindquist, A. Lesuffleur, H. Im, and S. Oh, Lab Chip 9, 382 (2009).
    [CrossRef] [PubMed]

2010 (3)

G. Zheng, X. Cui, and C. Yang, Proc. Natl. Acad. Sci. USA 107, 9043 (2010).
[CrossRef] [PubMed]

G. Konstantatos and E. Sargent, Nature Nanotech. 5, 391 (2010).
[CrossRef]

G. Zheng, Y. M. Wang, and C. Yang, Opt. Express 18, 16499 (2010).
[CrossRef] [PubMed]

2009 (1)

N. Lindquist, A. Lesuffleur, H. Im, and S. Oh, Lab Chip 9, 382 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (2)

P. Lalanne and J. Hugonin, Nature Phys. 2, 551 (2006).
[CrossRef]

X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

2003 (1)

1995 (1)

E. Phizicky and S. Fields, Microbiol. Mol. Biol. Rev. 59, 94 (1995).

Baugh, L.

X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Bhat, R.

Brueck, S.

Cui, X.

G. Zheng, X. Cui, and C. Yang, Proc. Natl. Acad. Sci. USA 107, 9043 (2010).
[CrossRef] [PubMed]

Erickson, D.

X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Fields, S.

E. Phizicky and S. Fields, Microbiol. Mol. Biol. Rev. 59, 94 (1995).

Heng, X.

X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Hesselink, L.

Hugonin, J.

P. Lalanne and J. Hugonin, Nature Phys. 2, 551 (2006).
[CrossRef]

Im, H.

N. Lindquist, A. Lesuffleur, H. Im, and S. Oh, Lab Chip 9, 382 (2009).
[CrossRef] [PubMed]

Konstantatos, G.

G. Konstantatos and E. Sargent, Nature Nanotech. 5, 391 (2010).
[CrossRef]

Lalanne, P.

P. Lalanne and J. Hugonin, Nature Phys. 2, 551 (2006).
[CrossRef]

Lesuffleur, A.

N. Lindquist, A. Lesuffleur, H. Im, and S. Oh, Lab Chip 9, 382 (2009).
[CrossRef] [PubMed]

Lindquist, N.

N. Lindquist, A. Lesuffleur, H. Im, and S. Oh, Lab Chip 9, 382 (2009).
[CrossRef] [PubMed]

Narayanaswamy, R.

R. Narayanaswamy and O. Wolfbeis, Optical Sensors: Industrial, Environmental and Diagnostic Applications (Springer, 2004).

Oh, S.

N. Lindquist, A. Lesuffleur, H. Im, and S. Oh, Lab Chip 9, 382 (2009).
[CrossRef] [PubMed]

Osgood, R.

Panoiu, N.

Phizicky, E.

E. Phizicky and S. Fields, Microbiol. Mol. Biol. Rev. 59, 94 (1995).

Psaltis, D.

X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Sargent, E.

G. Konstantatos and E. Sargent, Nature Nanotech. 5, 391 (2010).
[CrossRef]

Shi, X.

Sternberg, P.

X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Thornton, R.

Wang, Y. M.

Wolfbeis, O.

R. Narayanaswamy and O. Wolfbeis, Optical Sensors: Industrial, Environmental and Diagnostic Applications (Springer, 2004).

Yang, C.

G. Zheng, X. Cui, and C. Yang, Proc. Natl. Acad. Sci. USA 107, 9043 (2010).
[CrossRef] [PubMed]

G. Zheng, Y. M. Wang, and C. Yang, Opt. Express 18, 16499 (2010).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Yaqoob, Z.

X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Zheng, G.

G. Zheng, X. Cui, and C. Yang, Proc. Natl. Acad. Sci. USA 107, 9043 (2010).
[CrossRef] [PubMed]

G. Zheng, Y. M. Wang, and C. Yang, Opt. Express 18, 16499 (2010).
[CrossRef] [PubMed]

Lab Chip (2)

X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

N. Lindquist, A. Lesuffleur, H. Im, and S. Oh, Lab Chip 9, 382 (2009).
[CrossRef] [PubMed]

Microbiol. Mol. Biol. Rev. (1)

E. Phizicky and S. Fields, Microbiol. Mol. Biol. Rev. 59, 94 (1995).

Nature Nanotech. (1)

G. Konstantatos and E. Sargent, Nature Nanotech. 5, 391 (2010).
[CrossRef]

Nature Phys. (1)

P. Lalanne and J. Hugonin, Nature Phys. 2, 551 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

G. Zheng, X. Cui, and C. Yang, Proc. Natl. Acad. Sci. USA 107, 9043 (2010).
[CrossRef] [PubMed]

Other (1)

R. Narayanaswamy and O. Wolfbeis, Optical Sensors: Industrial, Environmental and Diagnostic Applications (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Predetection background suppression scheme of the SWEDA pixel. (b) In conventional schemes, background subtraction is accomplished with the help of a second measurement made by a neighboring pixel. (c) Simulation of the SWEDA structure. Displayed is the real part of the electric field component, equivalent to the time-domain fields at the instant of time when the source phase is zero. (d) Simulation of the single hole. The suppression ratio (transmission of single hole/transmission of SWEDA) is about 8700 in this simulation.

Fig. 2
Fig. 2

(a) Focus-ion-beam image of the SWEDA pixel (based on Aptina MT9P031 sensor, with a 2.2 μm pixel size). (b) Images taken by the sensor under a uniform light illumination with three different wavelengths. The SWEDA pixel is optimized for a single wavelength, and the measured best suppression ratio was 1100 at 775 nm . We also note that in Fig. 2b, the CMOS image sensor was overexposed to clearly show the difference between the SWEDA pixel and the pixel with a simple hole opening.

Fig. 3
Fig. 3

(a) SNR curves versus different SBR values. The background intensity is fixed at 3.96 W / m 2 . (b) We used an optical chopper to modulate the input focus signal beam and record the time trace of the SWEDA pixel readout in the black upper curve ( SNR = 2.2 , SBR = 0.001 ). The time trace of the single pixel readout is shown in the red lower curve ( SNR = 2.26 , SBR = 0.001 ).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNR post = E signal E noise + E background fluctuation detector shot noise limit ε τ P signal h ν SBR SBR + 1 ,
SNR post = E signal E noise + E background fluctuation detector shot noise limit ε τ P signal h ν SBR SBR + 1 / δ b δ b 1 ε τ P signal h ν ,

Metrics