Abstract

We report a spectroscopic method using coherent random lasers for a simple, yet nanoscale, sensing approach. Unique spectral properties of coherent random laser emission can be detectably altered when introducing nanoscale perturbations to a simple nanocomposite film that consists of dielectric nanospheres and laser-dye-doped polymer to serve as a transducer. Random lasing action provides a means to amplify subtle perturbations to readily detectable spectral shifts in multiple discrete emission peaks. Owing to several advantages, such as large-area detection, narrow and multiple emission peaks, straightforward detection, and simple fabrication, random laser spectroscopy has the potential for ultrasensitive, yet simple, biosensors in various applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription