Abstract

We propose and experimentally demonstrate an all-fiber-based approach to generate microwave signals with tunable frequency and pulse width. The adjustable optical power spectrum can be achieved using a spectrum shaper, consisting of a variable differential-group-delay element and a bandwidth-tunable optical filter. Through the frequency-to-time conversion in the dispersive fiber, the frequency and pulse width of the obtained microwave signals can be user defined by modifying the optical spectrum shape.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
    [CrossRef]
  2. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  3. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
    [CrossRef]
  4. L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
    [CrossRef]
  5. R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
    [CrossRef]
  6. C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
    [CrossRef]
  7. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  8. J. U. Kang, M. Y. Frankel, and R. D. Esman, Opt. Lett. 23, 1188 (1998).
    [CrossRef]
  9. C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
    [CrossRef]
  10. V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
    [CrossRef]
  11. M. Muriel, J. Azaa, and A. Carballar, Opt. Lett. 24, 1 (1999).
    [CrossRef]
  12. L.-S. Yan, C. Yeh, G. Yang, L. Lin, Z. Chen, Y. Q. Shi, A. E. Willner, and X. S. Yao, J. Lightwave Technol. 21, 1676(2003).
    [CrossRef]
  13. N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
    [CrossRef]

2010 (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

2009 (2)

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

2008 (2)

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
[CrossRef]

2007 (2)

J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

2003 (2)

1999 (1)

1998 (1)

1997 (1)

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

1996 (1)

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Andres, P.

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Azaa, J.

Braun, R. P.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
[CrossRef]

Carballar, A.

Chen, Z.

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Esman, R. D.

Frankel, M. Y.

Grosskopf, G.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Kang, J. U.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Lancis, J.

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Lin, L.

Marcenac, D. D.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Monroy, I. T.

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Moodie, D. G.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Muriel, M.

Nel, L.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Nesset, D.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
[CrossRef]

Pleros, N.

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Rohde, D.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Schmidt, F.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Shi, Y. Q.

Torres-Company, V.

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Tsagkaris, K.

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

Tselikas, N. D.

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

Vyrsokinos, K.

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

Wake, D.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Wang, C.

C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Westbrook, L. D.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Willner, A. E.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Yan, L.-S.

Yang, G.

Yao, J. P.

J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

Yao, X. S.

Yeh, C.

Zeng, F.

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Electron. Lett. (1)

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
[CrossRef]

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

J. Lightwave Technol. (3)

Nature Photon. (2)

J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Opt. Commun. (1)

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Conceptual diagram of the proposed microwave signal generation system. (b) Configuration of the spectrum shaper: MOD, modulator and VDGD, variable differential group delay.4/CO

Fig. 2
Fig. 2

(a) Optical spectrum of the pulse after the spectrum shaper and (b) temporal waveform of the generated microwave signals with frequency of 13 GHz and temporal width of 1.2 ns ; here the DGD is set to 40 ps and the 3 dB bandwidth of the BTOF is 3 nm .4/CO

Fig. 3
Fig. 3

Detected microwave signals with a frequency of 13 GHz with 3 dB bandwidth of the BTOF of (a) 2.1 nm and (b) 1.2 nm .4/CO

Fig. 4
Fig. 4

Temporal waveforms with the DGD value of (a) 18 ps and (b) 95 ps ; note that a piece of PMF is used for (b).4/CO

Fig. 5
Fig. 5

(a) Frequencies of generated rf signals versus DGD values and (b) temporal width and 3 dB bandwidth of generated rf signals versus 3 dB bandwidth of the BTOF.4/CO

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = C exp ( - ω 2 τ 2 ) ,
A ( ω ) = A ( ω ) [ 1 + cos ( ω T ) ] ( ω l < ω < ω h ) ,
a ( t ) = C exp ( j 2 Φ 2 t 2 ) A ( ω ) ω = t / Φ 2 = C exp ( j 2 Φ 2 t 2 ) exp ( - t 2 Φ 2 2 τ 2 ) [ 1 + cos ( T t Φ 2 ) ] , ( t l < t < t h ) ,
f = T / ( 2 π Φ 2 ) ,
t = ( ω h - ω l ) Φ 2 2 π c λ 2 λ Φ 2 ,

Metrics