Abstract

We propose and experimentally demonstrate an all-fiber-based approach to generate microwave signals with tunable frequency and pulse width. The adjustable optical power spectrum can be achieved using a spectrum shaper, consisting of a variable differential-group-delay element and a bandwidth-tunable optical filter. Through the frequency-to-time conversion in the dispersive fiber, the frequency and pulse width of the obtained microwave signals can be user defined by modifying the optical spectrum shape.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
    [CrossRef]
  2. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  3. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
    [CrossRef]
  4. L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
    [CrossRef]
  5. R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
    [CrossRef]
  6. C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
    [CrossRef]
  7. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  8. J. U. Kang, M. Y. Frankel, and R. D. Esman, Opt. Lett. 23, 1188 (1998).
    [CrossRef]
  9. C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
    [CrossRef]
  10. V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
    [CrossRef]
  11. M. Muriel, J. Azaa, and A. Carballar, Opt. Lett. 24, 1 (1999).
    [CrossRef]
  12. L.-S. Yan, C. Yeh, G. Yang, L. Lin, Z. Chen, Y. Q. Shi, A. E. Willner, and X. S. Yao, J. Lightwave Technol. 21, 1676(2003).
    [CrossRef]
  13. N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
    [CrossRef]

2010

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

2009

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

2008

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
[CrossRef]

2007

J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

2003

1999

1998

1997

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

1996

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Andres, P.

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Azaa, J.

Braun, R. P.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
[CrossRef]

Carballar, A.

Chen, Z.

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Esman, R. D.

Frankel, M. Y.

Grosskopf, G.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Kang, J. U.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Lancis, J.

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Lin, L.

Marcenac, D. D.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Monroy, I. T.

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Moodie, D. G.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Muriel, M.

Nel, L.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Nesset, D.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
[CrossRef]

Pleros, N.

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Rohde, D.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Schmidt, F.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Shi, Y. Q.

Torres-Company, V.

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Tsagkaris, K.

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

Tselikas, N. D.

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

Vyrsokinos, K.

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, J. Lightwave Technol. 27, 1960 (2009).
[CrossRef]

Wake, D.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Wang, C.

C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Westbrook, L. D.

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

Willner, A. E.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Yan, L.-S.

Yang, G.

Yao, J. P.

J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

Yao, X. S.

Yeh, C.

Zeng, F.

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Electron. Lett.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, Electron. Lett. 32, 626 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, IEEE Photon. Technol. Lett. 19, 137 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

C. Wang and J. P. Yao, IEEE Trans. Microw. Theory Tech. 56, 542 (2008).
[CrossRef]

L. Nel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, IEEE Trans. Microw. Theory Tech. 45, 1416 (1997).
[CrossRef]

J. Lightwave Technol.

Nature Photon.

J. Capmany and D. Novak, Nature Photon. 1, 319 (2007).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nature Photon. 4, 117 (2010).
[CrossRef]

Opt. Commun.

V. Torres-Company, I. T. Monroy, J. Lancis, and P. Andres, Opt. Commun. 281, 3965 (2008).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Conceptual diagram of the proposed microwave signal generation system. (b) Configuration of the spectrum shaper: MOD, modulator and VDGD, variable differential group delay.4/CO

Fig. 2
Fig. 2

(a) Optical spectrum of the pulse after the spectrum shaper and (b) temporal waveform of the generated microwave signals with frequency of 13 GHz and temporal width of 1.2 ns ; here the DGD is set to 40 ps and the 3 dB bandwidth of the BTOF is 3 nm .4/CO

Fig. 3
Fig. 3

Detected microwave signals with a frequency of 13 GHz with 3 dB bandwidth of the BTOF of (a) 2.1 nm and (b) 1.2 nm .4/CO

Fig. 4
Fig. 4

Temporal waveforms with the DGD value of (a) 18 ps and (b) 95 ps ; note that a piece of PMF is used for (b).4/CO

Fig. 5
Fig. 5

(a) Frequencies of generated rf signals versus DGD values and (b) temporal width and 3 dB bandwidth of generated rf signals versus 3 dB bandwidth of the BTOF.4/CO

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = C exp ( - ω 2 τ 2 ) ,
A ( ω ) = A ( ω ) [ 1 + cos ( ω T ) ] ( ω l < ω < ω h ) ,
a ( t ) = C exp ( j 2 Φ 2 t 2 ) A ( ω ) ω = t / Φ 2 = C exp ( j 2 Φ 2 t 2 ) exp ( - t 2 Φ 2 2 τ 2 ) [ 1 + cos ( T t Φ 2 ) ] , ( t l < t < t h ) ,
f = T / ( 2 π Φ 2 ) ,
t = ( ω h - ω l ) Φ 2 2 π c λ 2 λ Φ 2 ,

Metrics