Abstract

We report the successful production of high-quality gold wires, with diameters down to 260nm, by direct fiber drawing from a gold-filled fused-silica cane. The stack-and-draw technique makes it straightforward to incorporate a conventional step-index core, adjacent to the gold wire, in the cane. In the drawn fiber, strong coupling of light from the glass core to SPP resonances on the gold wire is observed at specific well-defined wavelengths. Such embedded wires have many potential applications, for example, as nanoscale electrodes, in nonlinear optical plasmonics, and as near-field scanning optical microscope tips.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Piliarik, M. Vala, I. Tichy, and J. Homola, Biosens. Bioelectron. 24, 3430 (2009).
    [CrossRef]
  2. Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Nano Lett. 9, 2049 (2009).
    [CrossRef] [PubMed]
  3. M. A. Schmidt and P. St.J. Russell, Opt. Express 16, 13617 (2008).
    [CrossRef] [PubMed]
  4. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
    [CrossRef]
  5. N. Myren, H. Olsson, L. Norin, N. Sjodin, P. Helander, J. Svennebrink, and W. Margulis, Opt. Express 12, 6093(2004).
    [CrossRef] [PubMed]
  6. S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, Mol. Cryst. Liq. Cryst. 502, 87 (2009).
    [CrossRef]
  7. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, Phys. Rev. B 77, 033417(2008).
    [CrossRef]
  8. H. K. Tyagi, M. A. Schmidt, L. P. Sempere, and P. St.J. Russell, Opt. Express 16, 17227 (2008).
    [CrossRef] [PubMed]
  9. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St.J. Russell, Opt. Lett. 32, 1647 (2007).
    [CrossRef] [PubMed]
  10. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St.J. Russell, Opt. Lett. 34, 1946 (2009).
    [CrossRef] [PubMed]
  11. R. H. Doremus, J. Appl. Phys. 92, 7619 (2002).
    [CrossRef]
  12. I. W. Donald, J. Mater. Sci. 22, 2661 (1987).
    [CrossRef]
  13. G. F. Taylor, Phys Rev 23, 655 (1924).
    [CrossRef]
  14. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006).
    [CrossRef] [PubMed]
  15. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, Opt. Express 16, 5983 (2008).
    [CrossRef] [PubMed]
  16. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, Opt. Express 16, 18675 (2008).
    [CrossRef]
  17. D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 96, 023102 (2010).
    [CrossRef]
  18. E. W. Washburn, Phys. Rev. 17, 273 (1921).
    [CrossRef]
  19. J. W. Fleming, Appl. Opt. 23, 4486 (1984).
    [CrossRef] [PubMed]
  20. S. L. Chuang, J. Lightwave Technol. 5, 5 (1987).
    [CrossRef]

2010 (1)

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

2009 (4)

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St.J. Russell, Opt. Lett. 34, 1946 (2009).
[CrossRef] [PubMed]

M. Piliarik, M. Vala, I. Tichy, and J. Homola, Biosens. Bioelectron. 24, 3430 (2009).
[CrossRef]

Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Nano Lett. 9, 2049 (2009).
[CrossRef] [PubMed]

S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, Mol. Cryst. Liq. Cryst. 502, 87 (2009).
[CrossRef]

2008 (6)

2007 (1)

2006 (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

R. H. Doremus, J. Appl. Phys. 92, 7619 (2002).
[CrossRef]

1987 (2)

I. W. Donald, J. Mater. Sci. 22, 2661 (1987).
[CrossRef]

S. L. Chuang, J. Lightwave Technol. 5, 5 (1987).
[CrossRef]

1984 (1)

1924 (1)

G. F. Taylor, Phys Rev 23, 655 (1924).
[CrossRef]

1921 (1)

E. W. Washburn, Phys. Rev. 17, 273 (1921).
[CrossRef]

Abouraddy, A. F.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Ballato, J.

Bird, D.

Buczynski, R.

S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, Mol. Cryst. Liq. Cryst. 502, 87 (2009).
[CrossRef]

Chuang, S. L.

S. L. Chuang, J. Lightwave Technol. 5, 5 (1987).
[CrossRef]

Da, N.

Dabrowski, R.

S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, Mol. Cryst. Liq. Cryst. 502, 87 (2009).
[CrossRef]

Danto, S.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Daw, M.

Deng, D. S.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Donald, I. W.

I. W. Donald, J. Mater. Sci. 22, 2661 (1987).
[CrossRef]

Doremus, R. H.

R. H. Doremus, J. Appl. Phys. 92, 7619 (2002).
[CrossRef]

Ellison, M.

Ertman, S.

S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, Mol. Cryst. Liq. Cryst. 502, 87 (2009).
[CrossRef]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

Fang, Y. R.

Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Nano Lett. 9, 2049 (2009).
[CrossRef] [PubMed]

Fink, Y.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Fleming, J. W.

Foy, P.

George, A.

Granzow, N.

Hao, F.

Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Nano Lett. 9, 2049 (2009).
[CrossRef] [PubMed]

Hawkins, T.

Helander, P.

Homola, J.

M. Piliarik, M. Vala, I. Tichy, and J. Homola, Biosens. Bioelectron. 24, 3430 (2009).
[CrossRef]

Hou, J.

Joannopoulos, J. D.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Kakarantzas, G.

Knight, J. C.

Kokuoz, B.

Kuhlmey, B. T.

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

Lee, H. W.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Maier, S.

Margulis, W.

McMillen, C.

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

Myren, N.

Nordlander, P.

Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Nano Lett. 9, 2049 (2009).
[CrossRef] [PubMed]

Norin, L.

Nowinowski-Kruszelnicki, E.

S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, Mol. Cryst. Liq. Cryst. 502, 87 (2009).
[CrossRef]

Olsson, H.

Orf, N. D.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

Pearce, G. J.

Peng, M.

Piliarik, M.

M. Piliarik, M. Vala, I. Tichy, and J. Homola, Biosens. Bioelectron. 24, 3430 (2009).
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, Phys. Rev. B 77, 033417(2008).
[CrossRef]

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St.J. Russell, Opt. Lett. 32, 1647 (2007).
[CrossRef] [PubMed]

Powers, D. R.

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, Phys. Rev. B 77, 033417(2008).
[CrossRef]

Pysz, D.

S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, Mol. Cryst. Liq. Cryst. 502, 87 (2009).
[CrossRef]

Rao, A. M.

Reppert, J.

Rice, R. R.

Russell, P. St.J.

Schmidt, M. A.

Sempere, L. P.

H. K. Tyagi, M. A. Schmidt, L. P. Sempere, and P. St.J. Russell, Opt. Express 16, 17227 (2008).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Sharma, S.

Shori, R.

Sjodin, N.

Stafsudd, O.

Stolen, R.

Svennebrink, J.

Taylor, G. F.

G. F. Taylor, Phys Rev 23, 655 (1924).
[CrossRef]

Tichy, I.

M. Piliarik, M. Vala, I. Tichy, and J. Homola, Biosens. Bioelectron. 24, 3430 (2009).
[CrossRef]

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. P. Sempere, and P. St.J. Russell, Opt. Express 16, 17227 (2008).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, Phys. Rev. B 77, 033417(2008).
[CrossRef]

Vala, M.

M. Piliarik, M. Vala, I. Tichy, and J. Homola, Biosens. Bioelectron. 24, 3430 (2009).
[CrossRef]

Washburn, E. W.

E. W. Washburn, Phys. Rev. 17, 273 (1921).
[CrossRef]

Wei, H.

Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Nano Lett. 9, 2049 (2009).
[CrossRef] [PubMed]

Wolinski, T. R.

S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, Mol. Cryst. Liq. Cryst. 502, 87 (2009).
[CrossRef]

Wondraczek, L.

Xu, H. X.

Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Nano Lett. 9, 2049 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 96, 023102 (2010).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

M. Piliarik, M. Vala, I. Tichy, and J. Homola, Biosens. Bioelectron. 24, 3430 (2009).
[CrossRef]

J. Appl. Phys. (1)

R. H. Doremus, J. Appl. Phys. 92, 7619 (2002).
[CrossRef]

J. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

S. L. Chuang, J. Lightwave Technol. 5, 5 (1987).
[CrossRef]

J. Mater. Sci. (1)

I. W. Donald, J. Mater. Sci. 22, 2661 (1987).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, Mol. Cryst. Liq. Cryst. 502, 87 (2009).
[CrossRef]

Nano Lett. (1)

Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Nano Lett. 9, 2049 (2009).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys Rev (1)

G. F. Taylor, Phys Rev 23, 655 (1924).
[CrossRef]

Phys. Rev. (1)

E. W. Washburn, Phys. Rev. 17, 273 (1921).
[CrossRef]

Phys. Rev. B (1)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, Phys. Rev. B 77, 033417(2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the gold-filled fiber. The structure consists of a Ge O 2 : Si O 2 core, a fused-silica cladding, and a parallel gold nanowire.

Fig. 2
Fig. 2

(a) Scanning-electron micrograph of a gold-filled step-index fiber polished using focused ion-beam milling. The core and wire diameters are given in the text. The coordinate system defines the direction of the electric field in two principal states of polarization. (b) Smallest wire fabricated by direct fiber drawing (diameter 260 nm ).

Fig. 3
Fig. 3

(a) Measured attenuation spectra of light guided in the glass core of the gold-filled step-index fiber (black, y polarization; gray, x polarization). (b) Corresponding finite-element simulation of the step-index fiber; parameters are given in the text (black, y polarization; gray, x polarization). (c) Effective indices of guided SPP modes on isolated gold wires embedded in fused silica. The numbers refer to the mode order. The gray line shows the dispersion of the fundamental mode in the absence of any gold wire. The shaded vertical bars indicate the positions of the peaks in the loss spectra and the points where the refractive indices of the guided SPP modes and the glass core mode coincide. The insets show the axial Poynting vector distributions of the guided SPP modes at these crossing points (fourth-order mode, λ 0 = 1011 nm ; fifth-order mode, λ 0 = 908 nm ).

Metrics