Abstract

A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss for the intracavity field copropagating with the single-pass field, effectively generating a loss difference between the copropagating and counterpropagating intracavity fields. This loss mechanism ensures stable unidirectional lasing. The approach is generic and can be implemented at any desired lasing wavelength where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342nm cw ring laser are presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
  2. P. A. Khandokhin and Ya. I. Khanin, J. Opt. Soc. Am. B 2, 226 (1985).
    [CrossRef]
  3. T. J. Kane and R. L. Byer, Opt. Lett. 10, 65 (1985).
    [CrossRef] [PubMed]
  4. W. A. Clarkson and D. C. Hanna, Opt. Commun. 81, 375 (1991).
    [CrossRef]
  5. D. Y. Shen, W. A. Clarkson, L. J. Cooper, and R. B. Williams, Opt. Lett. 29, 2396 (2004).
    [CrossRef] [PubMed]
  6. Y. K. Park, G. Guiliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
    [CrossRef]
  7. S. Emanueli and A. Arie, Appl. Opt. 42, 6661 (2003).
    [CrossRef] [PubMed]
  8. M. T. Andersen, P. J. Schlosser, J. E. Hastie, P. Tidemand-Lichtenberg, M. D. Dawson, and C. Pedersen, Opt. Express 17, 6010 (2009).
    [CrossRef] [PubMed]

2009

2004

2003

1991

W. A. Clarkson and D. C. Hanna, Opt. Commun. 81, 375 (1991).
[CrossRef]

1985

1984

Y. K. Park, G. Guiliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
[CrossRef]

Andersen, M. T.

Arie, A.

Byer, R. L.

T. J. Kane and R. L. Byer, Opt. Lett. 10, 65 (1985).
[CrossRef] [PubMed]

Y. K. Park, G. Guiliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
[CrossRef]

Clarkson, W. A.

Cooper, L. J.

Dawson, M. D.

Emanueli, S.

Guiliani, G.

Y. K. Park, G. Guiliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
[CrossRef]

Hanna, D. C.

W. A. Clarkson and D. C. Hanna, Opt. Commun. 81, 375 (1991).
[CrossRef]

Hastie, J. E.

Kane, T. J.

Khandokhin, P. A.

Khanin, Ya. I.

Park, Y. K.

Y. K. Park, G. Guiliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
[CrossRef]

Pedersen, C.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

Schlosser, P. J.

Shen, D. Y.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

Tidemand-Lichtenberg, P.

Williams, R. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. The diode-pumped 1342 nm Nd : YV O 4 ring laser contains an etalon and a PP:KTP crystal phase-matched for SFG between the single-pass 1064 nm laser and the copropagating intracavity 1342 nm field.

Fig. 2
Fig. 2

Graphs showing the nonlinear induced single-pass loss and the shift in resonance frequency as a function of the nonlinear material temperature, calculated for different power levels of the single-pass laser. The nonlinear material is a 10-mm-long PP:KTP crystal situated in an 815-mm-long ring cavity.

Fig. 3
Fig. 3

Power in the two directions of propagation, measured with the single-pass laser switched ON/OFF, with a single-pass laser power of 0.5 W .

Fig. 4
Fig. 4

Measured spectrum of the generated counterpropagating laser power with and without the single-pass laser beam, with a single-pass laser power of 0.5 W .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d a 1 d z = i g a 3 a 2 * exp ( i Δ k z ) , d a 2 d z = i g a 3 a 2 * exp ( i Δ k z ) , d a 3 d z = i g a 1 a 2 exp ( i Δ k z ) ,
L parametric = g 2 L 2 ω 2 I 2 sin 2 ( 1 2 Δ k L ) ( 1 2 Δ k L ) 2 ,

Metrics