Abstract

According to a recent experiment, the instantaneous electronic Kerr effect in air exhibits a strong intensity dependence, the nonlinear refractive index switching sign and crossing over from a self-focusing to a defocusing nonlinearity. A subsequent theoretical work has demonstrated that this has paradigm-changing consequences for the understanding of filamentation in air, so it is important to subject the idea of higher-order nonlinearities to stringent tests. Here we use numerical modeling to propose an experiment capable of discriminating between the standard and the new intensity-dependent Kerr-effect models.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the higher-order Kerr effect in femtosecond filaments

M. Kolesik, D. Mirell, J.-C. Diels, and J. V. Moloney
Opt. Lett. 35(21) 3685-3687 (2010)

Femtosecond filamentation in argon and higher-order nonlinearities

Zhanxin Wang, Chaojin Zhang, Jiansheng Liu, Ruxin Li, and Zhizhan Xu
Opt. Lett. 36(12) 2336-2338 (2011)

Mid-infrared laser filaments in air at a kilohertz repetition rate

Houkun Liang, Darshana L. Weerawarne, Peter Krogen, Rostislav I. Grynko, Chien-Jen Lai, Bonggu Shim, Franz X. Kärtner, and Kyung-Han Hong
Optica 3(7) 678-681 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription