Abstract

According to a recent experiment, the instantaneous electronic Kerr effect in air exhibits a strong intensity dependence, the nonlinear refractive index switching sign and crossing over from a self-focusing to a defocusing nonlinearity. A subsequent theoretical work has demonstrated that this has paradigm-changing consequences for the understanding of filamentation in air, so it is important to subject the idea of higher-order nonlinearities to stringent tests. Here we use numerical modeling to propose an experiment capable of discriminating between the standard and the new intensity-dependent Kerr-effect models.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
    [Crossref]
  2. N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001).
    [Crossref]
  3. A. Couairon, Phys. Rev. A 68, 015801 (2003).
    [Crossref]
  4. A. Vincotte and L. Berge, Phys. Rev. A 70, 061802(R)(2004).
    [Crossref]
  5. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
    [Crossref]
  6. K. M. M. Nurhuda and A. Suda, New J. Phys. 10, 053006 (2008).
    [Crossref]
  7. S. L. Chin, F. Theberge, and W. Liu, Appl. Phys. B 86, 477 (2007).
    [Crossref]
  8. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
    [Crossref] [PubMed]
  9. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010).
    [Crossref]
  10. P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
    [Crossref] [PubMed]
  11. W. Wang, K. Allaart, and D. Lenstra, Opt. Commun. 278, 395 (2007).
    [Crossref]
  12. M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
    [Crossref]
  13. R. Nuter and L. Berge, J. Opt. Soc. Am. B 23, 874 (2006).
    [Crossref]
  14. F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, Opt. Commun. 245, 399 (2005).
    [Crossref]
  15. H. Xiong, H. Xu, Y. C. Y. Fu, Z. Xu, and S. Chin, Phys. Rev. A 77, 043802 (2008).
    [Crossref]
  16. M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, Appl. Phys. B 85, 531 (2006).
    [Crossref]

2010 (2)

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010).
[Crossref]

2009 (1)

2008 (2)

H. Xiong, H. Xu, Y. C. Y. Fu, Z. Xu, and S. Chin, Phys. Rev. A 77, 043802 (2008).
[Crossref]

K. M. M. Nurhuda and A. Suda, New J. Phys. 10, 053006 (2008).
[Crossref]

2007 (4)

S. L. Chin, F. Theberge, and W. Liu, Appl. Phys. B 86, 477 (2007).
[Crossref]

W. Wang, K. Allaart, and D. Lenstra, Opt. Commun. 278, 395 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[Crossref]

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

2006 (2)

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, Appl. Phys. B 85, 531 (2006).
[Crossref]

R. Nuter and L. Berge, J. Opt. Soc. Am. B 23, 874 (2006).
[Crossref]

2005 (1)

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, Opt. Commun. 245, 399 (2005).
[Crossref]

2004 (2)

A. Vincotte and L. Berge, Phys. Rev. A 70, 061802(R)(2004).
[Crossref]

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
[Crossref]

2003 (1)

A. Couairon, Phys. Rev. A 68, 015801 (2003).
[Crossref]

2001 (1)

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001).
[Crossref]

Aközbek, N.

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, Opt. Commun. 245, 399 (2005).
[Crossref]

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001).
[Crossref]

Allaart, K.

W. Wang, K. Allaart, and D. Lenstra, Opt. Commun. 278, 395 (2007).
[Crossref]

Becker, A.

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, Appl. Phys. B 85, 531 (2006).
[Crossref]

Bejot, P.

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

Berge, L.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

R. Nuter and L. Berge, J. Opt. Soc. Am. B 23, 874 (2006).
[Crossref]

A. Vincotte and L. Berge, Phys. Rev. A 70, 061802(R)(2004).
[Crossref]

Bowden, C. M.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001).
[Crossref]

Chin, S.

H. Xiong, H. Xu, Y. C. Y. Fu, Z. Xu, and S. Chin, Phys. Rev. A 77, 043802 (2008).
[Crossref]

Chin, S. L.

S. L. Chin, F. Theberge, and W. Liu, Appl. Phys. B 86, 477 (2007).
[Crossref]

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, Opt. Commun. 245, 399 (2005).
[Crossref]

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[Crossref]

A. Couairon, Phys. Rev. A 68, 015801 (2003).
[Crossref]

Faucher, O.

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010).
[Crossref]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
[Crossref] [PubMed]

Fu, Y. C. Y.

H. Xiong, H. Xu, Y. C. Y. Fu, Z. Xu, and S. Chin, Phys. Rev. A 77, 043802 (2008).
[Crossref]

Gravel, J.-F.

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, Opt. Commun. 245, 399 (2005).
[Crossref]

Henin, S.

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

Hertz, E.

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010).
[Crossref]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
[Crossref] [PubMed]

Kasparian, J.

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

Kolesik, M.

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, Appl. Phys. B 85, 531 (2006).
[Crossref]

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
[Crossref]

Lavorel, B.

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010).
[Crossref]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
[Crossref] [PubMed]

Lenstra, D.

W. Wang, K. Allaart, and D. Lenstra, Opt. Commun. 278, 395 (2007).
[Crossref]

Liu, W.

S. L. Chin, F. Theberge, and W. Liu, Appl. Phys. B 86, 477 (2007).
[Crossref]

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, Opt. Commun. 245, 399 (2005).
[Crossref]

Loriot, V.

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010).
[Crossref]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
[Crossref] [PubMed]

Moloney, J. V.

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, Appl. Phys. B 85, 531 (2006).
[Crossref]

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[Crossref]

Nurhuda, K. M. M.

K. M. M. Nurhuda and A. Suda, New J. Phys. 10, 053006 (2008).
[Crossref]

Nuter, R.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

R. Nuter and L. Berge, J. Opt. Soc. Am. B 23, 874 (2006).
[Crossref]

Scalora, M.

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001).
[Crossref]

Skupin, S.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

Suda, A.

K. M. M. Nurhuda and A. Suda, New J. Phys. 10, 053006 (2008).
[Crossref]

Theberge, F.

S. L. Chin, F. Theberge, and W. Liu, Appl. Phys. B 86, 477 (2007).
[Crossref]

Théberge, F.

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, Opt. Commun. 245, 399 (2005).
[Crossref]

Vieillard, T.

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

Vincotte, A.

A. Vincotte and L. Berge, Phys. Rev. A 70, 061802(R)(2004).
[Crossref]

Wang, W.

W. Wang, K. Allaart, and D. Lenstra, Opt. Commun. 278, 395 (2007).
[Crossref]

Wolf, J.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

Wolf, J.-P.

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

Wright, E. M.

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, Appl. Phys. B 85, 531 (2006).
[Crossref]

Xiong, H.

H. Xiong, H. Xu, Y. C. Y. Fu, Z. Xu, and S. Chin, Phys. Rev. A 77, 043802 (2008).
[Crossref]

Xu, H.

H. Xiong, H. Xu, Y. C. Y. Fu, Z. Xu, and S. Chin, Phys. Rev. A 77, 043802 (2008).
[Crossref]

Xu, Z.

H. Xiong, H. Xu, Y. C. Y. Fu, Z. Xu, and S. Chin, Phys. Rev. A 77, 043802 (2008).
[Crossref]

Appl. Phys. B (2)

S. L. Chin, F. Theberge, and W. Liu, Appl. Phys. B 86, 477 (2007).
[Crossref]

M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, Appl. Phys. B 85, 531 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

K. M. M. Nurhuda and A. Suda, New J. Phys. 10, 053006 (2008).
[Crossref]

Opt. Commun. (3)

N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001).
[Crossref]

W. Wang, K. Allaart, and D. Lenstra, Opt. Commun. 278, 395 (2007).
[Crossref]

F. Théberge, N. Aközbek, W. Liu, J.-F. Gravel, and S. L. Chin, Opt. Commun. 245, 399 (2005).
[Crossref]

Opt. Express (2)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[Crossref]

Phys. Rev. A (3)

A. Couairon, Phys. Rev. A 68, 015801 (2003).
[Crossref]

A. Vincotte and L. Berge, Phys. Rev. A 70, 061802(R)(2004).
[Crossref]

H. Xiong, H. Xu, Y. C. Y. Fu, Z. Xu, and S. Chin, Phys. Rev. A 77, 043802 (2008).
[Crossref]

Phys. Rev. E (1)

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
[Crossref]

Phys. Rev. Lett. (1)

P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Angle-integrated spectrum showing TH and FH generation. The standard and higher-order Kerr-effect models are compared for a tightly focused femtosecond pulse. The new model predicts stronger TH generation and several orders of magnitude more powerful FH radiation.

Fig. 2
Fig. 2

Harmonic conversion efficiency as a function of nominal focal intensity/energy. Full and open symbols represent the standard and the higher-order model, and diamonds and squares represent the TH and FH, respectively.

Fig. 3
Fig. 3

Ratio of the FH to the TH energy generated in the tightly focused femtosecond pulse. The standard model ratio roughly corresponds to an exponential decrease between the harmonic orders. In contrast, the new model predicts that the FH energy can be comparable to that of the TH.

Metrics