Abstract

We use subwavelength gratings (SWGs) to engineer the refractive index in microphotonic waveguides, including practical components such as input couplers and multiplexer circuits. This technique allows for direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6–3.5 by lithographic patterning. We demonstrate two experimental examples of refractive index engineering, namely, a microphotonic fiber-chip coupler with a coupling loss as small as 0.9dB and minimal wavelength dependence and a planar waveguide multiplexer with SWG nanostructure, which acts as a slab waveguide for light diffracted by the grating, while at the same time acting as a lateral cladding for the strip waveguide. This yields an operation bandwidth of 170nm for a device size of only ~160μm×100μm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. E. Tamm and V. L. Ginzburg, Izv. Akad. Nauk SSSR Ser. Fiz. 7, 30 (1943).
  2. J.N.Mait and W.W.Prather, eds., Selected Papers on Subwavelength Diffractive Optics, SPIE Milestone Series, V. Ms 166 (SPIE Press, 2001).
  3. P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, Opt. Express 14, 4695 (2006).
    [CrossRef] [PubMed]
  4. J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).
  5. T. J. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
    [CrossRef]
  6. F. Xia, L. Sekaric, and Y. Vlasov, Nat. Photon. 1, 63 (2006).
  7. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef] [PubMed]
  8. P. J. Bock, P. Cheben, A. Delâge, J. H. Schmid, D.-X. Xu, S. Janz, and T. J. Hall, Opt. Express 16, 17616 (2008).
    [CrossRef] [PubMed]
  9. R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, Opt. Lett. 34, 1408 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

P. J. Bock, P. Cheben, A. Delâge, J. H. Schmid, D.-X. Xu, S. Janz, and T. J. Hall, Opt. Express 16, 17616 (2008).
[CrossRef] [PubMed]

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).

2006 (2)

2003 (1)

1996 (1)

T. J. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

1943 (1)

I. E. Tamm and V. L. Ginzburg, Izv. Akad. Nauk SSSR Ser. Fiz. 7, 30 (1943).

Almeida, V. R.

Bock, P. J.

Brand, S.

T. J. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

Cheben, P.

Delâge, A.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).

P. J. Bock, P. Cheben, A. Delâge, J. H. Schmid, D.-X. Xu, S. Janz, and T. J. Hall, Opt. Express 16, 17616 (2008).
[CrossRef] [PubMed]

DeLaRue, R. M.

T. J. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

Densmore, A.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, Opt. Express 14, 4695 (2006).
[CrossRef] [PubMed]

Ginzburg, V. L.

I. E. Tamm and V. L. Ginzburg, Izv. Akad. Nauk SSSR Ser. Fiz. 7, 30 (1943).

Halir, R.

Hall, T. J.

Janz, S.

Krauss, T. J.

T. J. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

Lamontagne, B.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).

Lapointe, J.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).

Lipson, M.

Molina-Fernández, Í.

Panepucci, R. R.

Post, E.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).

Schmid, J. H.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).

P. J. Bock, P. Cheben, A. Delâge, J. H. Schmid, D.-X. Xu, S. Janz, and T. J. Hall, Opt. Express 16, 17616 (2008).
[CrossRef] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, Nat. Photon. 1, 63 (2006).

Tamm, I. E.

I. E. Tamm and V. L. Ginzburg, Izv. Akad. Nauk SSSR Ser. Fiz. 7, 30 (1943).

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, Nat. Photon. 1, 63 (2006).

Waldron, P.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).

Wangüemert-Pérez, J. G.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, Nat. Photon. 1, 63 (2006).

Xu, D.-X.

Adv. Opt. Technol. (1)

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delâge, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, Adv. Opt. Technol. 2008, 685489 (2008).

Izv. Akad. Nauk SSSR Ser. Fiz. (1)

I. E. Tamm and V. L. Ginzburg, Izv. Akad. Nauk SSSR Ser. Fiz. 7, 30 (1943).

Nat. Photon. (1)

F. Xia, L. Sekaric, and Y. Vlasov, Nat. Photon. 1, 63 (2006).

Nature (1)

T. J. Krauss, R. M. DeLaRue, and S. Brand, Nature 383, 699 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

J.N.Mait and W.W.Prather, eds., Selected Papers on Subwavelength Diffractive Optics, SPIE Milestone Series, V. Ms 166 (SPIE Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SWG waveguide (SEM image). Inset, dispersion diagrams for SWG and an equivalent strip waveguide with an engineered core refractive index of 2.65 (TE polarization).

Fig. 2
Fig. 2

SWG input coupler. (a) SEM image of the coupler. (b) Low-confinement section near the chip edge. (c) High-confinement section near the 450-nm-wide strip waveguide. (d) Intermediate section positioned at 15 μm from the chip edge. (e) Transmission spectra of the insertion loss of a strip waveguide terminated at both ends with a SWG coupler, for TE (blue) and TM (red) polarizations. The inset shows the intrinsic coupler loss measured on a series of couplers connected back to back.

Fig. 3
Fig. 3

Waveguide grating multiplexer with refractive index engineered SWG interface. (a) Fabricated multiplexer chip. (b) Detailed view showing several grating teeth (A) etched in a sidewall of strip waveguide (B) along with SWG nanostructure ( C 1 ) joining the slab waveguide (D) via a graded-index antireflective SWG interface ( C 2 ). The arrows indicate the light propagation direction in the strip waveguide (solid arrow) and light diffracted (dashed arrow) by the sidewall grating into the slab waveguide region via the SWG interface. (c) Measured multiplexer spectra.

Metrics