Abstract

We show, from experiments and numerical simulations, that dispersion of fiber Bragg grating (FBG) mirrors influences the formation of the optical power spectrum of Raman fiber lasers by shifting the cavity zero-dispersion wavelength inside the FBG reflectivity bandwidth. This results in a spectrum asymmetry, which is well described from a master equation including a third-order dispersion term.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Bouteiller, IEEE Photon. Technol. Lett. 15, 1698 (2003).
    [Crossref]
  2. V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, Opt. Express 15, 16690 (2007).
    [Crossref] [PubMed]
  3. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
    [Crossref]
  4. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, Laser Phys. 17, 1279 (2007).
    [Crossref]
  5. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
    [Crossref]
  6. E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
    [Crossref]
  7. E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
    [Crossref] [PubMed]
  8. P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
    [Crossref]
  9. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  10. G. Lenz, B. J. Eggleton, and N. Lichinitser, J. Opt. Soc. Am. B 15, 715 (1998).
    [Crossref]
  11. T. Erdogan, IEEE J. Lightwave Technol. 15, 1277 (1997).
    [Crossref]
  12. B. Barviau, S. Randoux, and P. Suret, Opt. Lett. 31, 1696 (2006).
    [Crossref] [PubMed]

2010 (1)

2009 (1)

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

2008 (1)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

2007 (3)

2006 (1)

2004 (1)

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[Crossref]

2003 (1)

J. C. Bouteiller, IEEE Photon. Technol. Lett. 15, 1698 (2003).
[Crossref]

1998 (1)

1997 (1)

T. Erdogan, IEEE J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

Ania-Castañón, J. D.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, Opt. Express 15, 16690 (2007).
[Crossref] [PubMed]

Babin, S. A.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, Laser Phys. 17, 1279 (2007).
[Crossref]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, Opt. Express 15, 16690 (2007).
[Crossref] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[Crossref]

Barviau, B.

Bouteiller, J. C.

J. C. Bouteiller, IEEE Photon. Technol. Lett. 15, 1698 (2003).
[Crossref]

Churkin, D. V.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, Laser Phys. 17, 1279 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[Crossref]

Eggleton, B. J.

Erdogan, T.

T. Erdogan, IEEE J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

Falkovich, G.

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

Harper, P.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, Opt. Express 15, 16690 (2007).
[Crossref] [PubMed]

Ismagulov, A. E.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, Laser Phys. 17, 1279 (2007).
[Crossref]

Kablukov, S. I.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, Laser Phys. 17, 1279 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[Crossref]

Karalekas, V.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, Opt. Express 15, 16690 (2007).
[Crossref] [PubMed]

Lenz, G.

Lichinitser, N.

Mezentsev, V. K.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

Podivilov, E. V.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, Laser Phys. 17, 1279 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[Crossref]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, Opt. Express 15, 16690 (2007).
[Crossref] [PubMed]

Randoux, S.

Suret, P.

Turitsyn, S. K.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, Opt. Express 15, 16690 (2007).
[Crossref] [PubMed]

Turitsyna, E. G.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

IEEE J. Lightwave Technol. (1)

T. Erdogan, IEEE J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. C. Bouteiller, IEEE Photon. Technol. Lett. 15, 1698 (2003).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, Laser Phys. 17, 1279 (2007).
[Crossref]

Opt. Commun. (1)

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

Other (1)

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: HWP, half-wave plate; WDM, wavelength-dense multiplexer; PC, polarization controller. P j ( j = 1 , 2 ) represents the power of the forward-propagating pump wave near FBG1 and FBG2. S j ( λ ) ( j = 1 , 2 ) represents the spectral power density of Stokes light incident on FBG1 and FBG2.

Fig. 2
Fig. 2

(a), (b) Experiments: spectra S 1 ( λ ) and S 2 ( λ ) of the Stokes light waves incident on (a) FBG1 and (b) FBG2 are plotted with the lower solid blue curves. Reflectivity power spectra of (a) FBG1 and (b) FBG2 are plotted with the upper dashed red curves. The resolution of the optical spectrum analyzer is of 0.01 nm . (c) Cavity second-order dispersion β 2 cav ( λ ) . λ 0 is the cavity ZDW, and λ s is the central wavelength of FBGs. (d) FBG losses: measurement (thin curve) and pa rabolic approximation (thick dashed curve).

Fig. 3
Fig. 3

Stokes optical power spectra numerically calculated from Eq. (1) with β 3 = 54.4 ps 3 (thick red curve) and β 3 = 0 ps 3 (thin black curve). Power spectrum experimentally recorded is shown with the dashed blue curve. Parameters used in numerical simulations are δ 0 = 0.77 , α s = 0.8 dB / km , α p = 0.9 dB / km , L = 0.5 km , δ 2 = 3.3 ps 2 , β 2 = + 15.7 ps 2 / km , γ = 6.3 W 1 km 1 , g = 12.3 dB · W 1 km 1 , β 3 = + 54.4 ps 3 , and P 1 = 0.58 W .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( T , t ) T = δ 0 + 2 α s L 2 τ r t A + 1 2 τ r t ( δ 2 i 2 L β 2 ) 2 A t 2 + β 3 6 τ r t 3 A t 3 + i 2 γ L τ r t | A | 2 A + g L τ r t P ¯ A .
P ¯ = P 1 1 exp ( α p L 2 g λ s λ p I L ) α p L + 2 g λ s λ p L I

Metrics