Abstract

We have conducted experimental investigations for the micromachining of dielectrics (fused silica) using an in tegrated femtosecond (fs) and nanosecond (ns) dual-beam laser system at different time delays between the fs and ns pulses. We found that the maximum ablation enhancement occurs when the fs pulse is shot near the peak of the ns pulse envelope. Enhancements up to 13.4 times in ablation depth and 50.7 times in the amount of material removal were obtained, as compared to fs laser ablation alone. The fs pulse increases the free electron density and changes the optical properties of fused silica to have metallic characteristics, which increases the absorption of the ns laser energy. This study provides an opportunity for efficient micromachining of dielectrics.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains

Lan Jiang, Pengjun Liu, Xueliang Yan, Ni Leng, Chuancai Xu, Hai Xiao, and Yongfeng Lu
Opt. Lett. 37(14) 2781-2783 (2012)

Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy

Moritz Grehn, Thomas Seuthe, Michael Höfner, Nils Griga, Christoph Theiss, Alexandre Mermillod-Blondin, Markus Eberstein, Hans Eichler, and Jörn Bonse
Opt. Mater. Express 4(4) 689-700 (2014)

Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering

Lan Jiang, Dawei Ying, Xin Li, and Yongfeng Lu
Opt. Lett. 37(17) 3648-3650 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription