Abstract

Structured-light illumination is a process of three-dimensional imaging where a series of time-multiplexed, striped patterns are projected onto a target scene with the corresponding captured images used to determine surface shape according to the warping of the projected patterns around the target. In a real-time system, a high-speed projector/camera pair is used such that any surface motion is small over the projected pattern sequence, but regardless of acquisition speed, there are always those pixels near the edge of a moving surface that capture the projected patterns on both fore- and background surfaces. These edge pixels then create unpredictable results that typically require expensive processing steps to remove, but in this Letter, we introduce a filtering process that identifies motion artifacts based upon the discrete Fourier transform applied to the time axis of the captured pattern sequence. The process is of very low computational complexity, and in this Letter, we demonstrate that in a real-time structured-light illumination (SLI) system, the process comes at a cost of 15 frames per second (fps), where our SLI system drops from 180 to 165fps after deleting those edge pixels where motion was detected.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription