Abstract

We investigate the dependence of Cherenkov radiation (CR) on pump pulse parameters and its evolution along the propagation distance. Using a Ti:sapphire laser emitting 10fs pulses as the pump source, we demonstrate highly efficient (>40%), broadband (>50nm) CR in the visible-wavelength range with a threshold energy less than 100pJ and a tuning range over 100nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986).
    [CrossRef] [PubMed]
  2. N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
    [CrossRef] [PubMed]
  3. L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
    [CrossRef]
  4. G. Genty, M. Lehtonen, and H. Ludvigsen, Opt. Express 12, 4616 (2004).
  5. A. V. Mitrofanov, Y. M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, and A. M. Zheltikov, Opt. Express 14, 10645 (2006).
    [CrossRef] [PubMed]
  6. H. Tu and S. A. Boppart, Opt. Express 17, 9858 (2009).
    [CrossRef] [PubMed]
  7. S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. Konig, Opt. Express 17, 13588 (2009).
    [CrossRef] [PubMed]
  8. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
    [CrossRef] [PubMed]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.(Academic, 2001).
  10. N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
    [CrossRef]
  11. A. V. Husakou and J. Herrmann, J. Opt. Soc. Am. B 19, 2171 (2002).
    [CrossRef]
  12. A. V. Gorbach and D. V. Skryabin, Nat. Photon. 1, 653(2007).
    [CrossRef]

2009

2008

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

2007

A. V. Gorbach and D. V. Skryabin, Nat. Photon. 1, 653(2007).
[CrossRef]

2006

2004

G. Genty, M. Lehtonen, and H. Ludvigsen, Opt. Express 12, 4616 (2004).

2003

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

2002

1999

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

1995

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

1986

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.(Academic, 2001).

Akhmediev, N.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Alfimov, M. V.

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

Boppart, S. A.

Buczynski, R.

Bugar, I.

Chen, H. H.

Cristiani, I.

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

Degiorgio, V.

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

Fedotov, A. B.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

Genty, G.

G. Genty, M. Lehtonen, and H. Ludvigsen, Opt. Express 12, 4616 (2004).

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, Nat. Photon. 1, 653(2007).
[CrossRef]

Herrmann, J.

Hill, S.

Husakou, A. V.

Ivanov, A. A.

Karlsson, M.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Kärtner, F. X.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Keller, U.

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Konig, F.

Kuklewicz, C. E.

Lee, Y. C.

Lehtonen, M.

G. Genty, M. Lehtonen, and H. Ludvigsen, Opt. Express 12, 4616 (2004).

Leonhardt, U.

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

Linik, Y. M.

Lorenc, D.

Ludvigsen, H.

G. Genty, M. Lehtonen, and H. Ludvigsen, Opt. Express 12, 4616 (2004).

Matuschek, N.

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Menyuk, C. R.

Mitrofanov, A. V.

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

Pysz, D.

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, Nat. Photon. 1, 653(2007).
[CrossRef]

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

Tartara, L.

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

Tu, H.

Wai, P. K. A.

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

Zheltikov, A. M.

Appl. Phys. B

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. Matuschek, F. X. Kärtner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photon.

A. V. Gorbach and D. V. Skryabin, Nat. Photon. 1, 653(2007).
[CrossRef]

Nature

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed.(Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) PCF dispersion and pulse spectrum after propagating a 300 pJ , 10 fs pulse through 2 cm PCF and (b) CR efficiency versus input pulse energy for three FWHM durations of the input pulse: 10 fs , 50 fs , and 100 fs .

Fig. 2
Fig. 2

(a) Evolution of CR with increased PCF length. The input pulse energy is fixed at 300 pJ . Two arrow pairs denote the group-velocity matching wavelengths predicted by the fiber dispersion. (b) Phase-matching condition for CR and group-velocity matching. The matching points between the CR pulse and Raman soliton corresponding to 15 cm and 74 cm PCF are marked, respectively, to illustrate the trapping process. Inset shows the wavelength-dependent group-velocity normalized to the light speed in vacuum.

Fig. 3
Fig. 3

(a) Evolution of CR and Raman soliton with increased pulse energy for 15 cm PCF, (b) conversion efficiency of CR and Raman soliton versus input pulse energy, and (c) 7 dB bandwidth of CR and Raman soliton versus input pulse energy.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( ω CR ω p ) n n ! β n ( ω p ) = γ P p 2 ,

Metrics