Abstract

We study noise transfer from pump to signal in silicon Raman amplifiers, with particular emphasis on the regimes of strong cumulative free-carrier absorption and heavy pump depletion. We calculate the relative intensity noise (RIN) transfers in copumped and counterpumped amplifiers and provide intuitive explanations for RIN peculiarities. We show that noise transfer at low frequencies may be suppressed by carefully choosing the pump intensity, effective free-carrier lifetime, or amplifier length, but only at the expense of a rise in noise at high frequencies.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, Opt. Express 11, 1731 (2003).
    [CrossRef] [PubMed]
  2. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, Opt. Express 12, 4261 (2004).
    [CrossRef] [PubMed]
  3. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
    [CrossRef]
  4. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004).
    [CrossRef] [PubMed]
  5. T. K. Liang and H. K. Tsang, Appl. Phys. Lett. 84, 2745 (2004).
    [CrossRef]
  6. I. D. Rukhlenko, C. Dissanayake, M. Premaratne, and G. P. Agrawal, Opt. Express 17, 5807 (2009).
    [CrossRef] [PubMed]
  7. X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
    [CrossRef]
  8. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 16, 200 (2010).
    [CrossRef]
  9. Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).
    [CrossRef] [PubMed]
  10. C. R. S. Fludger, V. Handerek, and R. J. Mears, IEEE J. Lightwave Technol. 19, 1140 (2001).
    [CrossRef]

2010 (1)

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 16, 200 (2010).
[CrossRef]

2009 (1)

2008 (1)

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

2007 (1)

2006 (1)

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

2004 (3)

2003 (1)

2001 (1)

C. R. S. Fludger, V. Handerek, and R. J. Mears, IEEE J. Lightwave Technol. 19, 1140 (2001).
[CrossRef]

Agrawal, G. P.

Boyraz, O.

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

Claps, R.

Cohen, O.

Dimitropoulos, D.

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004).
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, Opt. Express 11, 1731 (2003).
[CrossRef] [PubMed]

Dissanayake, C.

Fludger, C. R. S.

C. R. S. Fludger, V. Handerek, and R. J. Mears, IEEE J. Lightwave Technol. 19, 1140 (2001).
[CrossRef]

Hak, D.

Han, Y.

Handerek, V.

C. R. S. Fludger, V. Handerek, and R. J. Mears, IEEE J. Lightwave Technol. 19, 1140 (2001).
[CrossRef]

Jalali, B.

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004).
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, Opt. Express 11, 1731 (2003).
[CrossRef] [PubMed]

Liang, T. K.

T. K. Liang and H. K. Tsang, Appl. Phys. Lett. 84, 2745 (2004).
[CrossRef]

Lin, Q.

Liu, A.

Mears, R. J.

C. R. S. Fludger, V. Handerek, and R. J. Mears, IEEE J. Lightwave Technol. 19, 1140 (2001).
[CrossRef]

Painter, O. J.

Paniccia, M.

Premaratne, M.

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 16, 200 (2010).
[CrossRef]

I. D. Rukhlenko, C. Dissanayake, M. Premaratne, and G. P. Agrawal, Opt. Express 17, 5807 (2009).
[CrossRef] [PubMed]

Raghunathan, V.

Rong, H.

Rukhlenko, I. D.

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 16, 200 (2010).
[CrossRef]

I. D. Rukhlenko, C. Dissanayake, M. Premaratne, and G. P. Agrawal, Opt. Express 17, 5807 (2009).
[CrossRef] [PubMed]

Sang, X.

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

Tsang, H. K.

T. K. Liang and H. K. Tsang, Appl. Phys. Lett. 84, 2745 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

T. K. Liang and H. K. Tsang, Appl. Phys. Lett. 84, 2745 (2004).
[CrossRef]

IEEE J. Lightwave Technol. (1)

C. R. S. Fludger, V. Handerek, and R. J. Mears, IEEE J. Lightwave Technol. 19, 1140 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 16, 200 (2010).
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

Opt. Express (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

RIN-transfer spectra for different operating conditions of SRAs. The framed data represent the net signal gain and pump-depletion level. Free-carrier lifetimes, incident intensities, and amplifier lengths are varied for different curves as marked.4/CO

Fig. 2
Fig. 2

Dependence of low- ( 100 KHz ) and high-frequency ( 100 GHz ) RINs on amplifier length for I p 0 = 0.5 GW / cm 2 for copumped (top) and counterpumped (bottom) SRAs. Small panels show net signal gain (dashed curves) and depletion coefficients (solid curves) for free-carrier lifetimes of 1 and 4 ns .4/CO

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

± 1 I p ( I p z ± 1 v p I p t ) = - α p - β p I p - σ p N - γ p I s ,
1 I s ( I s z + 1 v s I s t ) = - α s - β s I s - σ s N - γ s I p ,
N t = - N τ c + ρ p I p 2 + ρ s I s 2 + ρ p s I p I s ,
σ j = σ 0 ( λ j / λ 0 ) 2 , σ 0 = 1.45 × 10 - 21 m 2 , λ 0 = 1.55 μm , γ p = g R + 2 β p s , γ s = ( λ p / λ s ) ( g R - 2 β p s ) , ρ j = β j λ j / ( 4 π c ) , ρ p s = β p s λ p / ( π c ) ,
I j ( z , t ) = I j ( z ) { 1 + a j ( z ) exp [ i ω ( t z / v p ) ] } , N ( z , t ) = N ( z ) [ 1 + n ( z ) exp ( i ω t ) ] ,
± 1 I p d I p d z = - α p - β p I p - σ p N - γ p I s ,
1 I s d I s d z = - α s - β s I s - σ s N + γ s I p ,
± d a p d z = - β p I p a p - σ p N n - γ p I s a s ,
d a s d z + i ω v ± a s = - β s I s a s - σ s N n + γ s I p a p ,
N ( z ) = τ c ( ρ p I p 2 + ρ s I s 2 + ρ p s I p I s ) , n ( z ) = 2 ( ρ p I p 2 a p + ρ s I s 2 a s ) + ρ p s I p I s ( a p + a s ) ( 1 + i ω τ c ) ( ρ p I p 2 + ρ s I s 2 + ρ p s I p I s ) .
I p ( δ ± ) = I p 0 , I s ( 0 ) = I s 0 , a p ( δ ± ) = a 0 , a s ( 0 ) = 0 ,

Metrics