Abstract

We present an amplification medium for optical parametric chirped-pulse amplification that allows for ultrabroadband gain in a collinear configuration. Our approach is based on aperiodic quasi-phase-matching (QPM). For the first demonstration of this method in a mid-IR optical parametric chirped-pulse amplifier, we chose a QPM grating design with a linear chirp of its associated spatial frequencies. The resulting 7.4-mm-long, aperiodically poled Mg:LiNbO3 amplification crystal has a chirp rate of κ=250cm2 and provides gain over the 800nm bandwidth centered at 3.4μm. We were able to generate pulses as short as 75fs and the pulse energy at the output of the optical parametric amplifier before compression was 1.5μJ. Low thermal load on the amplification medium allows for operation at a high repetition rate, 100kHz in our case, and high average power limited only by the available pump power.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [CrossRef]
  2. C. Erny, C. Heese, M. Haag, L. Gallmann, and U. Keller, Opt. Express 17, 1340 (2009).
    [CrossRef] [PubMed]
  3. O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, Opt. Express 17, 3587 (2009).
    [CrossRef] [PubMed]
  4. C. Erny, L. Gallmann, and U. Keller, Appl. Phys. B 96, 257 (2009).
    [CrossRef]
  5. T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
    [CrossRef]
  6. M. A. Arbore, O. Marco, and M. M. Fejer, Opt. Lett. 22, 865 (1997).
    [CrossRef] [PubMed]
  7. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 864 (1998).
    [CrossRef]
  8. L. Gallmann, G. Steinmeyer, G. Imeshev, J.-P. Meyn, M. M. Fejer, and U. Keller, Appl. Phys. B 74, S237 (2002).
    [CrossRef]
  9. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, Opt. Lett. 26, 614 (2001).
    [CrossRef]
  10. D. Artigas, D. T. Reid, M. M. Fejer, and L. Torner, Opt. Lett. 27, 442 (2002).
    [CrossRef]
  11. D. Artigas and D. T. Reid, Opt. Lett. 27, 851 (2002).
    [CrossRef]
  12. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, J. Opt. Soc. Am. B 25, 463 (2008).
    [CrossRef]
  13. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, J. Opt. Soc. Am. B 25, 680 (2008).
    [CrossRef]
  14. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, J. Opt. Soc. Am. B 25, 1402 (2008).
    [CrossRef]
  15. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, Opt. Lett. 32, 1138 (2007).
    [CrossRef] [PubMed]
  16. M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
    [CrossRef]
  17. B. Proctor and F. Wise, Opt. Lett. 17, 1295 (1992).
    [CrossRef] [PubMed]
  18. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]
  19. M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, Opt. Lett. 30, 634 (2005).
    [CrossRef] [PubMed]

2009 (3)

2008 (3)

2007 (1)

2005 (1)

2003 (1)

G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

2002 (3)

L. Gallmann, G. Steinmeyer, G. Imeshev, J.-P. Meyn, M. M. Fejer, and U. Keller, Appl. Phys. B 74, S237 (2002).
[CrossRef]

D. Artigas, D. T. Reid, M. M. Fejer, and L. Torner, Opt. Lett. 27, 442 (2002).
[CrossRef]

D. Artigas and D. T. Reid, Opt. Lett. 27, 851 (2002).
[CrossRef]

2001 (1)

1998 (1)

1997 (1)

1993 (1)

1992 (1)

1990 (1)

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

1989 (1)

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Adler, F.

Afeyan, B.

Arbore, M. A.

Artigas, D.

Bates, P. K.

Biegert, J.

Bloom, D. M.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Cerullo, G.

G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Chalus, O.

Charbonneau-Lefort, M.

Erny, C.

Fejer, M. M.

Gallmann, L.

C. Erny, C. Heese, M. Haag, L. Gallmann, and U. Keller, Opt. Express 17, 1340 (2009).
[CrossRef] [PubMed]

C. Erny, L. Gallmann, and U. Keller, Appl. Phys. B 96, 257 (2009).
[CrossRef]

L. Gallmann, G. Steinmeyer, G. Imeshev, J.-P. Meyn, M. M. Fejer, and U. Keller, Appl. Phys. B 74, S237 (2002).
[CrossRef]

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, Opt. Lett. 26, 614 (2001).
[CrossRef]

Galvanauskas, A.

Haag, M.

Harter, D.

Heese, C.

Imeshev, G.

Kane, D. J.

Keller, U.

Kühlke, D.

Leitenstorfer, A.

Marco, O.

Meyn, J.-P.

L. Gallmann, G. Steinmeyer, G. Imeshev, J.-P. Meyn, M. M. Fejer, and U. Keller, Appl. Phys. B 74, S237 (2002).
[CrossRef]

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, Opt. Lett. 26, 614 (2001).
[CrossRef]

Moutzouris, K.

Nishihara, H.

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

Proctor, B.

Proctor, M.

Reid, D. T.

Rodwell, M. J. W.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Silvestri, S. D.

G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Smolarski, M.

Steinmeyer, G.

L. Gallmann, G. Steinmeyer, G. Imeshev, J.-P. Meyn, M. M. Fejer, and U. Keller, Appl. Phys. B 74, S237 (2002).
[CrossRef]

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, Opt. Lett. 26, 614 (2001).
[CrossRef]

Suhara, T.

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

Torner, L.

Trebino, R.

Weingarten, K. J.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Wise, F.

Appl. Phys. B (2)

C. Erny, L. Gallmann, and U. Keller, Appl. Phys. B 96, 257 (2009).
[CrossRef]

L. Gallmann, G. Steinmeyer, G. Imeshev, J.-P. Meyn, M. M. Fejer, and U. Keller, Appl. Phys. B 74, S237 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Express (2)

Opt. Lett. (8)

Rev. Sci. Instrum. (1)

G. Cerullo and S. D. Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The grating used has a length of 7.4 mm and a negative chirp rate of κ = 250 cm . It has perfect phase-matching points for wavelengths ranging between 3 and 4 μm .

Fig. 2
Fig. 2

Gain spectrum of the first OPA stage, showing more than 800 nm amplification bandwidth when pumped at 1.9 GW / cm 2 . The measurement is limited only by the available seed bandwidth, giving rise to noise in the spectral wings.

Fig. 3
Fig. 3

The power spectrum of the seed (blue dashed–dotted curve) supports 71 fs transform-limited pulses. After the first amplifier (green dashed curve), the spectrum is broadened, supporting 65 fs pulses, and further broadened after the second amplifier (red solid curve), yielding spectral bandwidth for 54 fs pulses.

Fig. 4
Fig. 4

After compensation of group-delay dispersion and third-order dispersion, the pulses are compressed to 75 fs FWHM.

Fig. 5
Fig. 5

Left graph shows the power scaling of OPA1. There is only negligible OPG output. In the right graph. one can clearly see the amplification of the remaining OPG of OPA1. This can be suppressed by the use of a steeper long-pass filter between the two OPA stages. A completely unseeded OPA2 generates less than 2 mW OPG.

Metrics