Abstract

We utilize a sliced slab waveguide structure to produce a gain waveguide array. With this array, an in-phase locked single-mode frequency output with a single-peak intensity distribution without sidelobes and a highly spatially suppressed far-field distribution has been obtained.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. He, S. Yang, J. Harrison, A. Feitisch, and A. Ovtchinnikov, Electron. Lett. 35, 1739 (1999).
    [CrossRef]
  2. J. G. Endriz, M. Vakili, and G. S. Browder, IEEE J. Quantum Electron. 28, 952 (1992).
    [CrossRef]
  3. S. Menard, M. Vampouille, B. Colombeau, and C. Froehly, Opt. Lett. 21, 1996 (1996).
    [CrossRef] [PubMed]
  4. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, Opt. Lett. 31, 1247 (2006).
    [CrossRef] [PubMed]
  5. J. Xin, E. Zang, and G. Wei, Opt. Eng. 33, 1142 (1994).
    [CrossRef]
  6. K. M. Abramski, H. J. Baker, A. D. Colley, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
    [CrossRef]
  7. Y.-H. Zhong and J.-G. Xin, Chin. J. Lasers 33, 1030 (2006).
  8. J. J. Degnan and D. R. Hall, IEEE J. Quantum Electron. 9, 901 (1973).
    [CrossRef]

2006

1999

X. He, S. Yang, J. Harrison, A. Feitisch, and A. Ovtchinnikov, Electron. Lett. 35, 1739 (1999).
[CrossRef]

1996

1994

J. Xin, E. Zang, and G. Wei, Opt. Eng. 33, 1142 (1994).
[CrossRef]

1992

K. M. Abramski, H. J. Baker, A. D. Colley, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

J. G. Endriz, M. Vakili, and G. S. Browder, IEEE J. Quantum Electron. 28, 952 (1992).
[CrossRef]

1973

J. J. Degnan and D. R. Hall, IEEE J. Quantum Electron. 9, 901 (1973).
[CrossRef]

Abramski, K. M.

K. M. Abramski, H. J. Baker, A. D. Colley, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Baker, H. J.

K. M. Abramski, H. J. Baker, A. D. Colley, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Browder, G. S.

J. G. Endriz, M. Vakili, and G. S. Browder, IEEE J. Quantum Electron. 28, 952 (1992).
[CrossRef]

Cheung, E. C.

Colley, A. D.

K. M. Abramski, H. J. Baker, A. D. Colley, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Colombeau, B.

Degnan, J. J.

J. J. Degnan and D. R. Hall, IEEE J. Quantum Electron. 9, 901 (1973).
[CrossRef]

Endriz, J. G.

J. G. Endriz, M. Vakili, and G. S. Browder, IEEE J. Quantum Electron. 28, 952 (1992).
[CrossRef]

Epp, P.

Feitisch, A.

X. He, S. Yang, J. Harrison, A. Feitisch, and A. Ovtchinnikov, Electron. Lett. 35, 1739 (1999).
[CrossRef]

Froehly, C.

Goodno, G. D.

Hall, D. R.

K. M. Abramski, H. J. Baker, A. D. Colley, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

J. J. Degnan and D. R. Hall, IEEE J. Quantum Electron. 9, 901 (1973).
[CrossRef]

Harrison, J.

X. He, S. Yang, J. Harrison, A. Feitisch, and A. Ovtchinnikov, Electron. Lett. 35, 1739 (1999).
[CrossRef]

He, X.

X. He, S. Yang, J. Harrison, A. Feitisch, and A. Ovtchinnikov, Electron. Lett. 35, 1739 (1999).
[CrossRef]

Howland, D.

Injeyan, H.

Komine, H.

Long, W.

McClellan, M.

McNaught, S. J.

Menard, S.

Ovtchinnikov, A.

X. He, S. Yang, J. Harrison, A. Feitisch, and A. Ovtchinnikov, Electron. Lett. 35, 1739 (1999).
[CrossRef]

Redmond, S.

Simpson, R.

Sollee, J.

Vakili, M.

J. G. Endriz, M. Vakili, and G. S. Browder, IEEE J. Quantum Electron. 28, 952 (1992).
[CrossRef]

Vampouille, M.

Weber, M.

Wei, G.

J. Xin, E. Zang, and G. Wei, Opt. Eng. 33, 1142 (1994).
[CrossRef]

Weiss, S. B.

Xin, J.

J. Xin, E. Zang, and G. Wei, Opt. Eng. 33, 1142 (1994).
[CrossRef]

Xin, J.-G.

Y.-H. Zhong and J.-G. Xin, Chin. J. Lasers 33, 1030 (2006).

Yang, S.

X. He, S. Yang, J. Harrison, A. Feitisch, and A. Ovtchinnikov, Electron. Lett. 35, 1739 (1999).
[CrossRef]

Zang, E.

J. Xin, E. Zang, and G. Wei, Opt. Eng. 33, 1142 (1994).
[CrossRef]

Zhong, Y.-H.

Y.-H. Zhong and J.-G. Xin, Chin. J. Lasers 33, 1030 (2006).

Appl. Phys. Lett.

K. M. Abramski, H. J. Baker, A. D. Colley, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Chin. J. Lasers

Y.-H. Zhong and J.-G. Xin, Chin. J. Lasers 33, 1030 (2006).

Electron. Lett.

X. He, S. Yang, J. Harrison, A. Feitisch, and A. Ovtchinnikov, Electron. Lett. 35, 1739 (1999).
[CrossRef]

IEEE J. Quantum Electron.

J. G. Endriz, M. Vakili, and G. S. Browder, IEEE J. Quantum Electron. 28, 952 (1992).
[CrossRef]

J. J. Degnan and D. R. Hall, IEEE J. Quantum Electron. 9, 901 (1973).
[CrossRef]

Opt. Eng.

J. Xin, E. Zang, and G. Wei, Opt. Eng. 33, 1142 (1994).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the laser head structure: 1, aluminum top electrode; 2, aluminum bottom electrode; 3, matching inductor; 4, water cooling tube; 5, ceramic insulating plate; 6, LC (inductance capacitance) matching network; 7, RF power supply.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup arrangement: 1, laser head; 2, ZnSe beam splitter; 3, ZnSe lens; 4, intensity distribution scanner; 5, LeCroy wavePro 7000 oscilloscope; 6, copper reflector; 7, aperture; 8, CFT-500 interference scanner; 9, HgCdTe detector; 10, Tektronix TDS2012B digital oscilloscope; 11, copper reflector; 12, beam-free propagation direction.

Fig. 3
Fig. 3

Near-field intensity distribution of the laser array output.

Fig. 4
Fig. 4

Far-field intensity distribution of the laser array output.

Fig. 5
Fig. 5

Far-field burned pattern of the laser array output.

Fig. 6
Fig. 6

Mode characteristics in the gain waveguide laser array cavity.

Metrics