Abstract

Controllable microstructures are formed on a glass surface after irradiation of a focused 800nm, 250KHz femtosecond laser beam. Field-emission scanning electron microscope and 3D measuring laser microscope images reveal that the induced structures are circular and linear protuberances and can be controlled from 10μm to hundreds of micrometers in width, and from 1μm to tens of micrometers in height. The protuberance structure is proposed to be formed as a consequence of the laser-induced high temperature and pressure owing to linear and nonlinear absorption near the laser focal point, and low softening and melting temperature of the glass sample.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription