Abstract

We demonstrate an ytterbium-doped fiber laser that emits high-power radially polarized light efficiently. In this study, a photonic crystal grating (PCG) was used as a polarization-selective output coupler, and the power of the radially polarized laser reached 2.42W with a slope efficiency of 45.9% and a polarization purity of 96%. The results reveal that the inclusion of the PCG mirror into the fiber laser are particularly promising for generating high-power radially polarized light efficiently in view of its many important applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  2. V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
    [CrossRef]
  3. H. Kavauchi, K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 32, 1839 (2007).
    [CrossRef]
  4. Q. Zhan and J. R. Leger, Appl. Opt. 41, 4630 (2002).
    [CrossRef] [PubMed]
  5. Q. Zhan, Opt. Express 12, 3377 (2004).
    [CrossRef] [PubMed]
  6. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  7. J. L. Li, K. I. Ueda, L. X. Zhong, M. Musha, A. Shirakawa, and T. Sato, Opt. Express 16, 10841 (2008).
    [CrossRef] [PubMed]
  8. D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
    [CrossRef]
  9. Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE 60, 1107 (1972).
    [CrossRef]
  10. J. L. Li, K. I. Ueda, M. Musha, and A. Shirakawa, Opt. Lett. 31, 2969 (2006).
    [CrossRef] [PubMed]
  11. J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, Opt. Lett. 32, 1360 (2007).
    [CrossRef] [PubMed]
  12. J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
    [CrossRef]
  13. R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
    [CrossRef]
  14. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
    [CrossRef]
  15. J. L. Li, K.-I. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, Opt. Lett. 33, 2686 (2008).
    [CrossRef] [PubMed]
  16. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
    [CrossRef]

2009

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

2008

2007

2006

2004

2003

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002

1999

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

1990

1972

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE 60, 1107 (1972).
[CrossRef]

Davidson, N.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Escamilla, B. I.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Ford, D. H.

Fridman, M.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Friesem, A. A.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Haus, J. W.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Kavauchi, H.

Kimura, W. D.

Kozawa, Y.

Leger, J. R.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Li, J. L.

Machavariani, G.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Matsumura, K.

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE 60, 1107 (1972).
[CrossRef]

Musha, M.

Mushiake, Y.

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE 60, 1107 (1972).
[CrossRef]

Nakajima, N.

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE 60, 1107 (1972).
[CrossRef]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Niziev, V. G.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Pohl, D.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Powers, P. E.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Sato, S.

Sato, T.

Shirakawa, A.

Tidwell, S. C.

Ueda, K. I.

Ueda, K.-I.

J. L. Li, K.-I. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, Opt. Lett. 33, 2686 (2008).
[CrossRef] [PubMed]

J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
[CrossRef]

Yakunin, V. P.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Yonezawa, K.

Zhan, Q.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Q. Zhan, Opt. Express 12, 3377 (2004).
[CrossRef] [PubMed]

Q. Zhan and J. R. Leger, Appl. Opt. 41, 4630 (2002).
[CrossRef] [PubMed]

Zhang, Z. M.

Zhang, Z.-M.

J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
[CrossRef]

Zhong, L. X.

Zhong, L.-X.

J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
[CrossRef]

Zhou, R. J.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

J. Phys. D

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Laser Phys. Lett.

J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Proc. IEEE

Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE 60, 1107 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of radially polarized fiber laser.

Fig. 2
Fig. 2

Output power of the fiber laser versus the launched pump power at different fiber lengths.

Fig. 3
Fig. 3

Intensity distribution of the full laser beam profile at (a) P out = 0.19 W , (b) P out = 2.14 W when applying the long fiber, and (c) P out = 1.9 W when applying the short fiber. Intensity distribution of the passage beam through a polarizer analyzer at (d)–(g) P out = 0.19 W and (h)–(k) P out = 2.14 W when applying the long fiber and (l)–(o) P out = 1.9 W when applying the short fiber. The white arrows indicate the orientations of the polarizer analyzer, respectively.

Fig. 4
Fig. 4

Laser spectrum at 2.14 W output power when applying the long fiber.

Fig. 5
Fig. 5

Polarization purity of radially polarized light as a function of output power when applying the long gain fiber. Inset, intensity variation of extracted output beam by a 200 μm diameter aperture in the optical path when the polarizer analyzer was rotated at different orientations.

Metrics