Abstract

A new (to our knowledge) method for generating the modified spectrum autointerferometric correlation (MOSAIC) trace from the second-harmonic generation frequency-resolved optical gating (SHG FROG) dataset is shown. Examples are presented illustrating enhanced visual sensitivity, applicability, and complementary qualitative pulse characterization using SHG FROG.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  2. K. W. Delong, R. Trebino, J. Hunter, and W. E. White, J. Opt. Soc. Am. B 11, 2206 (1994).
    [CrossRef]
  3. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
    [CrossRef]
  4. M. Sheik-Bahae, Opt. Lett. 22, 399 (1997).
    [CrossRef] [PubMed]
  5. T. Hirayama and M. Sheik-Bahae, Opt. Lett. 27, 860 (2002).
    [CrossRef]
  6. D. A. Bender, M. P. Hasselbeck, and M. Sheik-Bahae, Opt. Lett. 31, 122 (2006).
    [CrossRef] [PubMed]
  7. D. A. Bender, J. W. Nicholson, and M. Sheik-Bahae, Opt. Express 16, 11782 (2008).
    [CrossRef] [PubMed]
  8. D. A. Bender and M. Sheik-Bahae, Opt. Lett. 32, 2822 (2007).
    [CrossRef] [PubMed]
  9. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26, 932 (2001).
    [CrossRef]
  10. Mesa Photonics, VideoFROG User’s Manual, Version 5.0 (2009).

2009

Mesa Photonics, VideoFROG User’s Manual, Version 5.0 (2009).

2008

2007

2006

2002

2001

2000

R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).

1999

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

1997

1994

Baltuska, A.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Bender, D. A.

Delong, K. W.

Gu, X.

Hasselbeck, M. P.

Hirayama, T.

Hunter, J.

Kimmel, M.

Nicholson, J. W.

O’Shea, P.

Pshenichnikov, M. S.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Sheik-Bahae, M.

Trebino, R.

White, W. E.

Wiersma, D. A.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simulated SHG FROG traces from (a) an unchirped and (b) a chirped pulse. The insets show pulse in the time domain. Corresponding MOSAIC traces produced from the SHG FROG traces: (c) unchirped and (d) chirped. Note the SHG FROG traces appear identical; complementary MOSAIC traces reveal pulse chirp [shaded area in (d)] without the need for iterative reconstruction.

Fig. 2
Fig. 2

(a) Measured and (b) reconstructed SHG FROG traces. (c) Comparison of corresponding MOSAIC traces produced from the measured (curves) and reconstructed (dots) FROG datasets. The inset displays S MOSAIC ( τ ) on a log scale; measured, black curve; reconstructed, light curve.

Fig. 3
Fig. 3

(a) Measured SHG FROG trace containing a slight asymmetry from beam misalignment. The inset shows that the MOSAIC traces visually identify the asymmetry as a difference in peak heights. (b) Measured symmetric SHG FROG trace after symmetrizing the MOSAIC trace (inset). While the FROG traces appear identical, the retrieval error was reduced by nearly a factor of 2 when MOSAIC was used to optimize alignment prior to retrieval.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S MOSAIC ( τ ) = g ( τ ) | g p ( τ ) | ,
I FROG SHG ( ω , τ ) = | E ( t ) E ( t τ ) e i ω t d t | 2 ,

Metrics