Abstract

Using ultrafast laser excitation and time-correlated single-photon counting techniques, we have measured the collisional mixing rates between the rubidium 52P fine-structure levels in the presence of He4 gas. A nonlinear dependence of the mixing rate with He4 density is observed. We find Rb fine-structure transfer is primarily due to binary collisions at He4 densities of 1019cm3, while at greater densities, three-body collisions become significant. We determine a three-body collisional transfer rate coefficient (52P3/252P1/2) of 1.25(9)×1032cm6/s at 22°C.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood and F. L. Mohler, Phys. Rev. 11, 70 (1918).
    [CrossRef]
  2. L. Krause, Appl. Opt. 5, 1375 (1966).
    [CrossRef] [PubMed]
  3. J. F. Kielkopf, J. Chem. Phys. 62, 4809 (1975).
    [CrossRef]
  4. L. Krause, Adv. Chem. Phys. 28, 267 (1975).
    [CrossRef]
  5. A. Gallagher, Phys. Rev. 172, 88 (1968).
    [CrossRef]
  6. S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, Opt. Lett. 32, 2423 (2007).
    [CrossRef] [PubMed]
  7. K. Hirano, K. Enomoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 68, 012722 (2003).
    [CrossRef]
  8. F. Gong, Y.-Y. Jau, and W. Happer, Phys. Rev. Lett. 100, 233002 (2008).
    [CrossRef] [PubMed]
  9. M. Harris, J. F. Kelly, and A. Gallagher, Phys. Rev. A 36, 1512 (1987).
    [CrossRef] [PubMed]
  10. D. V. O’Connor and D. Phillips, Time Correlated Single Photon Counting (Academic, 1984).
  11. R. Scheps and A. Gallagher, J. Chem. Phys. 65, 859 (1976).
    [CrossRef]

2008 (1)

F. Gong, Y.-Y. Jau, and W. Happer, Phys. Rev. Lett. 100, 233002 (2008).
[CrossRef] [PubMed]

2007 (1)

2003 (1)

K. Hirano, K. Enomoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 68, 012722 (2003).
[CrossRef]

1987 (1)

M. Harris, J. F. Kelly, and A. Gallagher, Phys. Rev. A 36, 1512 (1987).
[CrossRef] [PubMed]

1984 (1)

D. V. O’Connor and D. Phillips, Time Correlated Single Photon Counting (Academic, 1984).

1976 (1)

R. Scheps and A. Gallagher, J. Chem. Phys. 65, 859 (1976).
[CrossRef]

1975 (2)

J. F. Kielkopf, J. Chem. Phys. 62, 4809 (1975).
[CrossRef]

L. Krause, Adv. Chem. Phys. 28, 267 (1975).
[CrossRef]

1968 (1)

A. Gallagher, Phys. Rev. 172, 88 (1968).
[CrossRef]

1966 (1)

1918 (1)

R. W. Wood and F. L. Mohler, Phys. Rev. 11, 70 (1918).
[CrossRef]

Beach, R. J.

Enomoto, K.

K. Hirano, K. Enomoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 68, 012722 (2003).
[CrossRef]

Gallagher, A.

M. Harris, J. F. Kelly, and A. Gallagher, Phys. Rev. A 36, 1512 (1987).
[CrossRef] [PubMed]

R. Scheps and A. Gallagher, J. Chem. Phys. 65, 859 (1976).
[CrossRef]

A. Gallagher, Phys. Rev. 172, 88 (1968).
[CrossRef]

Gong, F.

F. Gong, Y.-Y. Jau, and W. Happer, Phys. Rev. Lett. 100, 233002 (2008).
[CrossRef] [PubMed]

Happer, W.

F. Gong, Y.-Y. Jau, and W. Happer, Phys. Rev. Lett. 100, 233002 (2008).
[CrossRef] [PubMed]

Harris, M.

M. Harris, J. F. Kelly, and A. Gallagher, Phys. Rev. A 36, 1512 (1987).
[CrossRef] [PubMed]

Hirano, K.

K. Hirano, K. Enomoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 68, 012722 (2003).
[CrossRef]

Jau, Y.-Y.

F. Gong, Y.-Y. Jau, and W. Happer, Phys. Rev. Lett. 100, 233002 (2008).
[CrossRef] [PubMed]

Kanz, V. K.

Kelly, J. F.

M. Harris, J. F. Kelly, and A. Gallagher, Phys. Rev. A 36, 1512 (1987).
[CrossRef] [PubMed]

Kielkopf, J. F.

J. F. Kielkopf, J. Chem. Phys. 62, 4809 (1975).
[CrossRef]

Krause, L.

L. Krause, Adv. Chem. Phys. 28, 267 (1975).
[CrossRef]

L. Krause, Appl. Opt. 5, 1375 (1966).
[CrossRef] [PubMed]

Kumakura, M.

K. Hirano, K. Enomoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 68, 012722 (2003).
[CrossRef]

Mitchell, S. C.

Mohler, F. L.

R. W. Wood and F. L. Mohler, Phys. Rev. 11, 70 (1918).
[CrossRef]

O’Connor, D. V.

D. V. O’Connor and D. Phillips, Time Correlated Single Photon Counting (Academic, 1984).

Page, R. H.

Phillips, D.

D. V. O’Connor and D. Phillips, Time Correlated Single Photon Counting (Academic, 1984).

Scheps, R.

R. Scheps and A. Gallagher, J. Chem. Phys. 65, 859 (1976).
[CrossRef]

Soules, T. F.

Takahashi, Y.

K. Hirano, K. Enomoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 68, 012722 (2003).
[CrossRef]

Wood, R. W.

R. W. Wood and F. L. Mohler, Phys. Rev. 11, 70 (1918).
[CrossRef]

Wu, S. S. Q.

Yabuzaki, T.

K. Hirano, K. Enomoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 68, 012722 (2003).
[CrossRef]

Adv. Chem. Phys. (1)

L. Krause, Adv. Chem. Phys. 28, 267 (1975).
[CrossRef]

Appl. Opt. (1)

J. Chem. Phys. (2)

J. F. Kielkopf, J. Chem. Phys. 62, 4809 (1975).
[CrossRef]

R. Scheps and A. Gallagher, J. Chem. Phys. 65, 859 (1976).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (2)

R. W. Wood and F. L. Mohler, Phys. Rev. 11, 70 (1918).
[CrossRef]

A. Gallagher, Phys. Rev. 172, 88 (1968).
[CrossRef]

Phys. Rev. A (2)

K. Hirano, K. Enomoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 68, 012722 (2003).
[CrossRef]

M. Harris, J. F. Kelly, and A. Gallagher, Phys. Rev. A 36, 1512 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

F. Gong, Y.-Y. Jau, and W. Happer, Phys. Rev. Lett. 100, 233002 (2008).
[CrossRef] [PubMed]

Other (1)

D. V. O’Connor and D. Phillips, Time Correlated Single Photon Counting (Academic, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus. Rubidium atoms are excited by a single ultrafast laser pulse. The subsequent fluorescence from collisional fine-structure transfer is observed using a time-correlated single-photon counting technique [10].

Fig. 2
Fig. 2

Typical dataset illustrating the laser excitation pulse (used to set t = 0 ) along with the fluorescence from collisional fine-structure transfer as detected by the PMT/TDC system ( He 4 pressure of 200 Torr ).

Fig. 3
Fig. 3

Experimentally measured mixing rates at He 4 pressures from 50 to 2000 Torr . The fit to the data points is a second-order polynomial, where the extracted linear and quadratic terms are also shown individually.

Fig. 4
Fig. 4

Ground and excited state interatomic potentials of Rb–He from the ab initio calculations of [7]. Collision processes that result in a three-body interaction are illustrated both at (a) larger atomic separations, where the Rb levels are unperturbed by two He atoms, to (b) and (c) smaller separations, where excimer formation may occur.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d n 1 / 2 d t = ( γ 1 / 2 + R 1 / 2 3 / 2 ) n 1 / 2 + R 3 / 2 1 / 2 n 3 / 2 ,
R 1 / 2 3 / 2 R 3 / 2 1 / 2 = g 3 / 2 g 1 / 2 e Δ E / k T ,
n 1 / 2 ( t ) = A e s + t + B e s t ,
R 3 / 2 1 / 2 = n He · σ 3 / 2 1 / 2 · v rel ,
Rb ( 5 2 P 3 / 2 ) + He + He Rb ( 5 2 P 1 / 2 ) + He + He ,
Rb ( 5 2 P 3 / 2 ) + He + He RbHe ( A 2 Π 1 / 2 ) + He ,
RbHe ( A 2 Π 1 / 2 ) + He Rb ( 5 2 P 1 / 2 ) + He + He ,

Metrics