Abstract

We investigate propagation of a transverse magnetic field through a nonlinear metamaterial slab of subwavelength thickness and with a very small and negative linear dielectric permittivity. We prove that, for a given input intensity, the output intensity is a multivalued function of the field incidence angle so that the transmissivity exhibits angular multistability and a pronounced directional hysteresis behavior. The predicted directional hysteresis is a consequence of the fact that the linear and nonlinear contributions to the overall dielectric response can be comparable so that the electromagnetic matching conditions at the output slab boundary allow more than one field configuration within the slab to be compatible with the transmitted field.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription