Abstract

We demonstrate the optical reconstruction in the visible range (0.532μm) of digital holograms recorded at long IR wavelengths (10.6μm) by means of a spatial light modulator. By using an integrated recording-reconstruction system, it is, in fact, feasible to achieve direct imaging of holograms acquired outside the visible range, i.e., in the IR spectrum. By choosing a Fourier recording configuration, the reconstructed image, obtained at about a 20 times shorter wavelength than the acquisition image, exhibits minor aberrations, which do not significantly affect the optical reconstruction. The high NA achievable at a long IR wavelength allows us to image large objects at reasonable distances.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Prévost, G. Thibault, P. Galarneau, M. Denariez-Roberge, A. Tarrats-Saugnac, and F. de Contencin, Appl. Opt. 28, 3751 (1989).
    [CrossRef] [PubMed]
  2. M. Rioux, M. Blanchard, M. Cormier, and R. Beaulieu, Appl. Opt. 17, 3864 (1978).
    [CrossRef] [PubMed]
  3. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, Appl. Opt. 17, 3619 (1978).
    [CrossRef] [PubMed]
  4. T. Sakusabe and S. Kobayashi, Jpn. J. Appl. Phys. 10, 758 (1971).
    [CrossRef]
  5. K. Shigeaki and K. Kyokot, Appl. Phys. Lett. 19, 482 (1971).
    [CrossRef]
  6. S. Calixto, Appl. Opt. 27, 1977 (1988).
    [CrossRef] [PubMed]
  7. M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, and D. Bélanger, Appl. Opt. 16, 1876 (1977).
    [CrossRef] [PubMed]
  8. G. Decker, H. Herold, and H. Röhr, Appl. Phys. Lett. 20, 490 (1972).
    [CrossRef]
  9. J. S. Chivian, R. N. Claytor, and D. D. Eden, Appl. Phys. Lett. 15, 123 (1969).
    [CrossRef]
  10. L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
    [CrossRef]
  11. P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, Opt. Lett. 34, 2787 (2009).
    [CrossRef] [PubMed]
  12. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
    [CrossRef] [PubMed]
  13. A. Stadelmaier and J. H. Massig, Opt. Lett. 25, 1630 (2000).
    [CrossRef]
  14. N. George, K. Khare, and W. Chi, Appl. Opt. 47, A7 (2008).
    [CrossRef] [PubMed]
  15. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
    [CrossRef]
  16. Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
    [CrossRef]
  17. M. R. Chatterjee and S. Chen, Digital Holography and Three-Dimensional Display: Principles and Applications, T.Poon, ed. (Springer, 2006), Chap. 13, pp. 379–425.
    [CrossRef]
  18. C. Kohler, X. Schwab, and W. Osten, Appl. Opt. 45, 960 (2006).
    [CrossRef] [PubMed]
  19. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, Appl. Opt. 41, 6187 (2002).
    [CrossRef] [PubMed]
  20. R. W. Meier, J. Opt. Soc. Am. 55, 1693 (1965).
    [CrossRef]
  21. M. Paturzo and P. Ferraro, Opt. Express 17, 20546 (2009).
    [CrossRef] [PubMed]
  22. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, J. Opt. Soc. Am. A 24, 1617 (2007).
    [CrossRef]
  23. F. A. Monroy and J. Garcia-Sucerquia, Opt. Int. J. Light Electron. Opt., doi:10.1016/j.ijleo.2009.06.011.

2009 (2)

2008 (2)

N. George, K. Khare, and W. Chi, Appl. Opt. 47, A7 (2008).
[CrossRef] [PubMed]

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

2003 (2)

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

1989 (1)

1988 (1)

1978 (2)

1977 (1)

1972 (1)

G. Decker, H. Herold, and H. Röhr, Appl. Phys. Lett. 20, 490 (1972).
[CrossRef]

1971 (2)

T. Sakusabe and S. Kobayashi, Jpn. J. Appl. Phys. 10, 758 (1971).
[CrossRef]

K. Shigeaki and K. Kyokot, Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

1969 (1)

J. S. Chivian, R. N. Claytor, and D. D. Eden, Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

1965 (1)

Allaria, E.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Beaulieu, R.

Bélanger, D.

Bertaux, N.

Blanchard, M.

Brugioni, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Calixto, S.

Castro, A.

Chatterjee, M. R.

M. R. Chatterjee and S. Chen, Digital Holography and Three-Dimensional Display: Principles and Applications, T.Poon, ed. (Springer, 2006), Chap. 13, pp. 379–425.
[CrossRef]

Chen, S.

M. R. Chatterjee and S. Chen, Digital Holography and Three-Dimensional Display: Principles and Applications, T.Poon, ed. (Springer, 2006), Chap. 13, pp. 379–425.
[CrossRef]

Chi, W.

Chittofrati, R.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

Chivian, J. S.

J. S. Chivian, R. N. Claytor, and D. D. Eden, Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

Claytor, R. N.

J. S. Chivian, R. N. Claytor, and D. D. Eden, Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

Coppola, G.

Cormier, M.

Cui, Y.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

de Contencin, F.

De Nicola, S.

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
[CrossRef] [PubMed]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Decker, G.

G. Decker, H. Herold, and H. Röhr, Appl. Phys. Lett. 20, 490 (1972).
[CrossRef]

Denariez-Roberge, M.

Eden, D. D.

J. S. Chivian, R. N. Claytor, and D. D. Eden, Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

Ferraro, P.

Finizio, A.

Frauel, Y.

Galarneau, P.

Garcia-Sucerquia, J.

F. A. Monroy and J. Garcia-Sucerquia, Opt. Int. J. Light Electron. Opt., doi:10.1016/j.ijleo.2009.06.011.

George, N.

Grilli, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
[CrossRef] [PubMed]

Hennelly, B. M.

Herold, H.

G. Decker, H. Herold, and H. Röhr, Appl. Phys. Lett. 20, 490 (1972).
[CrossRef]

Javidi, B.

Khare, K.

Kobayashi, S.

T. Sakusabe and S. Kobayashi, Jpn. J. Appl. Phys. 10, 758 (1971).
[CrossRef]

Kohler, C.

Kyokot, K.

K. Shigeaki and K. Kyokot, Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

Lessard, R. A.

Magro, C.

Massig, J. H.

Matoba, O.

Maycock, J.

McDonald, J. B.

Meier, R. W.

Memmolo, P.

Meucci, R.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Monroy, F. A.

F. A. Monroy and J. Garcia-Sucerquia, Opt. Int. J. Light Electron. Opt., doi:10.1016/j.ijleo.2009.06.011.

Naughton, T. J.

Osten, W.

Paturzo, M.

Piano, E.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

Pierattini, G.

Pontiggia, C.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

Prévost, D.

Repetto, L.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

Rioux, M.

Röhr, H.

G. Decker, H. Herold, and H. Röhr, Appl. Phys. Lett. 20, 490 (1972).
[CrossRef]

Sakusabe, T.

T. Sakusabe and S. Kobayashi, Jpn. J. Appl. Phys. 10, 758 (1971).
[CrossRef]

Schwab, X.

Shigeaki, K.

K. Shigeaki and K. Kyokot, Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

Stadelmaier, A.

Sun, W.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Tarrats-Saugnac, A.

Thibault, G.

Wang, X.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Zhang, Y.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Zhou, W.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Appl. Opt. (9)

Appl. Phys. Lett. (3)

K. Shigeaki and K. Kyokot, Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

G. Decker, H. Herold, and H. Röhr, Appl. Phys. Lett. 20, 490 (1972).
[CrossRef]

J. S. Chivian, R. N. Claytor, and D. D. Eden, Appl. Phys. Lett. 15, 123 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

T. Sakusabe and S. Kobayashi, Jpn. J. Appl. Phys. 10, 758 (1971).
[CrossRef]

Opt. Commun. (2)

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Strain (1)

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Other (2)

M. R. Chatterjee and S. Chen, Digital Holography and Three-Dimensional Display: Principles and Applications, T.Poon, ed. (Springer, 2006), Chap. 13, pp. 379–425.
[CrossRef]

F. A. Monroy and J. Garcia-Sucerquia, Opt. Int. J. Light Electron. Opt., doi:10.1016/j.ijleo.2009.06.011.

Supplementary Material (3)

» Media 1: MOV (795 KB)     
» Media 2: MOV (972 KB)     
» Media 3: MOV (3324 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Photo of the Perseus statue. (b) Experimental setup for the recording and reconstruction processes: M, mirror; L, lens; BS, beam splitter; MO, microscope objective; SLM, spatial light modulator; SF, spatial filter.

Fig. 2
Fig. 2

(Media 1) A spectator observing the acquired hologram SLM optical reconstructions, projected on a screen. The size of the image reconstructed at visible wavelength was about 30 cm , comparable to the original object size.

Fig. 3
Fig. 3

(a), (Media 2) Numerical reconstruction obtained through the Fourier method. (b), (Media 3) SLM optical reconstruction performed at a visible wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P min = λ 2 sin θ max 2 = 2 d p ,
z o min = D + N d p 2 θ max = d p ( D + N d p ) λ D N d p d p D λ ,
W = ( 2 π λ c ) [ 1 2 ρ 3 ( C x cos θ + C y sin θ ) ] ,
W = ( 2 π λ c ) [ 1 2 ρ ( D x cos θ + D y sin θ ) ] .

Metrics