Abstract

We experimentally demonstrate linear bandgap guidance of optical vortices as high-gap defect modes (DMs) in two-dimensional induced photonic lattices. We show that donut-shaped vortex beams can be guided in a tunable negative (lower-index) defect, provided that the defect strength is set at an appropriate level. Such vortex DMs have fine features in the “tails” associated with the lattice anisotropy and can be considered as a superposition of dipole DMs. Our numerical results find good agreement with experimental observations.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-trapping of optical vortices at the surface of an induced semi-infinite photonic lattice

Daohong Song, Cibo Lou, Kody J.H. Law, Liqin Tang, Zhuoyi Ye, P.G. Kevrekidis, Jingjun Xu, and Zhigang Chen
Opt. Express 18(6) 5873-5878 (2010)

Observation of topological transformations of optical vortices in two-dimensional photonic lattices

Anna Bezryadina, Dragomir N. Neshev, Anton S. Desyatnikov, Jack Young, Zhigang Chen, and Yuri S. Kivshar
Opt. Express 14(18) 8317-8327 (2006)

Self-trapping and flipping of double-charged vortices in optically induced photonic lattices

Anna Bezryadina, Eugenia Eugenieva, and Zhigang Chen
Opt. Lett. 31(16) 2456-2458 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription