Abstract

Interface states are known to exist at the surface of an appropriately structured Bragg reflector. If such reflectors are present on the surfaces of two prisms separated by a narrow gap, the evanescently coupled interface states can interact to produce a pair of very narrow transmission lines, the separation of which can be adjusted by varying the size of the gap between the two prisms. Thus, although only a single cavity is involved, the spectral properties of the system are similar to those of a dual-cavity photonic microstructure. In addition to other potential applications, we propose that such a structure could form the basis of an adjustable beat-frequency emitter in the terahertz regime.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, and C.-S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
    [CrossRef]
  2. R. L. Nelson and J. W. Haus, Appl. Phys. Lett. 83, 1089 (2003).
    [CrossRef]
  3. C. Bhan and P. C. Mehta, Opt. and Laser Technol. 21, 44 (1989).
    [CrossRef]
  4. H.-Y. Lee and T. Yao, J. Kor. Phys. Soc. 44, 387 (2004).
  5. O. Zabeida, A. Amassian, S. Larouche, C. Lavigne, J. E. Klemberg-Sapieha, and L. Martinu, Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2001), paper WA7.
  6. S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Phys. D 43, 145104 (2010).
    [CrossRef]
  7. S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Appl. Phys. 106, 113109 (2009).
    [CrossRef]
  8. D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, J. Mod. Optics 51, 437 (2004).
    [CrossRef]
  9. D. Dragoman and M. Dragoman, Prog. Quant. Electron. 28, 1 (2004).
    [CrossRef]
  10. G. K. Kitaeva, Laser Phys. Lett. 5, 559 (2008).
    [CrossRef]
  11. T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, Appl. Phys. Lett. 95, 111106 (2009).
    [CrossRef]
  12. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, Opt. Express 17, 13851 (2009).
    [CrossRef] [PubMed]
  13. R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
    [CrossRef]

2010 (1)

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Phys. D 43, 145104 (2010).
[CrossRef]

2009 (3)

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Appl. Phys. 106, 113109 (2009).
[CrossRef]

T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, Appl. Phys. Lett. 95, 111106 (2009).
[CrossRef]

N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, Opt. Express 17, 13851 (2009).
[CrossRef] [PubMed]

2008 (1)

G. K. Kitaeva, Laser Phys. Lett. 5, 559 (2008).
[CrossRef]

2007 (1)

R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
[CrossRef]

2004 (3)

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, J. Mod. Optics 51, 437 (2004).
[CrossRef]

D. Dragoman and M. Dragoman, Prog. Quant. Electron. 28, 1 (2004).
[CrossRef]

H.-Y. Lee and T. Yao, J. Kor. Phys. Soc. 44, 387 (2004).

2003 (1)

R. L. Nelson and J. W. Haus, Appl. Phys. Lett. 83, 1089 (2003).
[CrossRef]

1989 (1)

C. Bhan and P. C. Mehta, Opt. and Laser Technol. 21, 44 (1989).
[CrossRef]

1977 (1)

Abram, R. A.

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Phys. D 43, 145104 (2010).
[CrossRef]

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Appl. Phys. 106, 113109 (2009).
[CrossRef]

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, J. Mod. Optics 51, 437 (2004).
[CrossRef]

Amassian, A.

O. Zabeida, A. Amassian, S. Larouche, C. Lavigne, J. E. Klemberg-Sapieha, and L. Martinu, Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2001), paper WA7.

Beggs, D. M.

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, J. Mod. Optics 51, 437 (2004).
[CrossRef]

Bhan, C.

C. Bhan and P. C. Mehta, Opt. and Laser Technol. 21, 44 (1989).
[CrossRef]

Brand, S.

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Phys. D 43, 145104 (2010).
[CrossRef]

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Appl. Phys. 106, 113109 (2009).
[CrossRef]

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, J. Mod. Optics 51, 437 (2004).
[CrossRef]

Dragoman, D.

D. Dragoman and M. Dragoman, Prog. Quant. Electron. 28, 1 (2004).
[CrossRef]

Dragoman, M.

D. Dragoman and M. Dragoman, Prog. Quant. Electron. 28, 1 (2004).
[CrossRef]

Frob, H.

R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
[CrossRef]

Gehlaar, R.

R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
[CrossRef]

Haus, J. W.

R. L. Nelson and J. W. Haus, Appl. Phys. Lett. 83, 1089 (2003).
[CrossRef]

Hoffmann, M.

R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
[CrossRef]

Hong, C.-S.

Isu, T.

T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, Appl. Phys. Lett. 95, 111106 (2009).
[CrossRef]

Jang, Y.

Jeon, M. Y.

Kaliteevski, M. A.

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Phys. D 43, 145104 (2010).
[CrossRef]

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Appl. Phys. 106, 113109 (2009).
[CrossRef]

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, J. Mod. Optics 51, 437 (2004).
[CrossRef]

Kim, N.

Kitada, T.

T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, Appl. Phys. Lett. 95, 111106 (2009).
[CrossRef]

Kitaeva, G. K.

G. K. Kitaeva, Laser Phys. Lett. 5, 559 (2008).
[CrossRef]

Klemberg-Sapieha, J. E.

O. Zabeida, A. Amassian, S. Larouche, C. Lavigne, J. E. Klemberg-Sapieha, and L. Martinu, Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2001), paper WA7.

Larouche, S.

O. Zabeida, A. Amassian, S. Larouche, C. Lavigne, J. E. Klemberg-Sapieha, and L. Martinu, Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2001), paper WA7.

Lavigne, C.

O. Zabeida, A. Amassian, S. Larouche, C. Lavigne, J. E. Klemberg-Sapieha, and L. Martinu, Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2001), paper WA7.

Lee, C. W.

Lee, H.-Y.

H.-Y. Lee and T. Yao, J. Kor. Phys. Soc. 44, 387 (2004).

Leo, K.

R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
[CrossRef]

Lyssenko, V. G.

R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
[CrossRef]

Martinu, L.

O. Zabeida, A. Amassian, S. Larouche, C. Lavigne, J. E. Klemberg-Sapieha, and L. Martinu, Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2001), paper WA7.

Mehta, P. C.

C. Bhan and P. C. Mehta, Opt. and Laser Technol. 21, 44 (1989).
[CrossRef]

Morita, K.

T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, Appl. Phys. Lett. 95, 111106 (2009).
[CrossRef]

Nelson, R. L.

R. L. Nelson and J. W. Haus, Appl. Phys. Lett. 83, 1089 (2003).
[CrossRef]

Park, K. H.

Shin, J.

Sim, E.

Sudzius, M.

R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
[CrossRef]

Swoboda, M.

R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
[CrossRef]

Takahashi, T.

T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, Appl. Phys. Lett. 95, 111106 (2009).
[CrossRef]

Tanaka, F.

T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, Appl. Phys. Lett. 95, 111106 (2009).
[CrossRef]

Yao, T.

H.-Y. Lee and T. Yao, J. Kor. Phys. Soc. 44, 387 (2004).

Yariv, A.

Yee, D.-S.

Yeh, P.

Zabeida, O.

O. Zabeida, A. Amassian, S. Larouche, C. Lavigne, J. E. Klemberg-Sapieha, and L. Martinu, Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2001), paper WA7.

Appl. Phys. B (1)

R. Gehlaar, M. Swoboda, M. Sudzius, M. Hoffmann, H. Frob, V. G. Lyssenko, and K. Leo, Appl. Phys. B 86, 413 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, Appl. Phys. Lett. 95, 111106 (2009).
[CrossRef]

R. L. Nelson and J. W. Haus, Appl. Phys. Lett. 83, 1089 (2003).
[CrossRef]

J. Appl. Phys. (1)

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Appl. Phys. 106, 113109 (2009).
[CrossRef]

J. Kor. Phys. Soc. (1)

H.-Y. Lee and T. Yao, J. Kor. Phys. Soc. 44, 387 (2004).

J. Mod. Optics (1)

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, J. Mod. Optics 51, 437 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

S. Brand, R. A. Abram, and M. A. Kaliteevski, J. Phys. D 43, 145104 (2010).
[CrossRef]

Laser Phys. Lett. (1)

G. K. Kitaeva, Laser Phys. Lett. 5, 559 (2008).
[CrossRef]

Opt. and Laser Technol. (1)

C. Bhan and P. C. Mehta, Opt. and Laser Technol. 21, 44 (1989).
[CrossRef]

Opt. Express (1)

Prog. Quant. Electron. (1)

D. Dragoman and M. Dragoman, Prog. Quant. Electron. 28, 1 (2004).
[CrossRef]

Other (1)

O. Zabeida, A. Amassian, S. Larouche, C. Lavigne, J. E. Klemberg-Sapieha, and L. Martinu, Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2001), paper WA7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic structure, consisting of two back-to-back prisms with overlaid BRs, separated by a small air gap. For the cal culations described, the outer prism surfaces are effectively extended to infinity. For transmission purposes, the light path is in direction T, whereas the reflected light follows path R with θ = 45 ° .

Fig. 2
Fig. 2

Transmission coefficients for a 69-layer BR with no air gap (PBG); for a full multilayer structure (two 17-layer pair BRs plus thicker final high-index layers and a 3.5 μm air gap) (AG); and for two prisms with a 3.5 μm air gap and no BR (Air)—all for light incident at angle θ = 45 ° . The air gap causes the structure to behave as an effective total internal reflector over most of the range shown, but the interaction between the evanescent fields of the photonic interface states leads to two distinctive narrow-width transmission lines, which are shown on an expanded wavelength scale in Fig. 3.

Fig. 3
Fig. 3

Transmission coefficient as a function of wavelength for a series of different air-gap widths for light incident at angle θ = 45 ° . In the weak coupling regime with an air gap of 7050 nm , the single effectively flat-top transmission feature has a FWHM of 0.15 nm , whereas there is a FWHM = 0.11 nm for the 3000 nm air gap.

Fig. 4
Fig. 4

Snapshots in time of the H field associated with the lower-energy (S) and upper-energy (A) transmission lines for the 3.5 μm air-gap structure indicated in Fig. 3. The peaks in | H | near the left and right edges of the air gap are in the high refractive index regions of the multilayer structures. The incident H field has unit amplitude.

Metrics