Abstract

Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive to variations in the optical fluence. Factors such as system bandwidth and acoustic attenuation can affect the quantification but can be canceled by dividing the acoustic spectra measured at two optical wavelengths. Using optical-resolution photoacoustic microscopy, we quantified the absolute optical absorption of black ink samples with various concentrations. We also quantified both the concentration and oxygen saturation of hemoglobin in a live mouse in absolute units.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, Appl. Phys. Lett. 90, 053901 (2007).
    [CrossRef]
  2. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  3. B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
    [CrossRef] [PubMed]
  4. K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
    [CrossRef]
  5. J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 141 (2007).
    [CrossRef]
  6. Z. Yuan and H. B. Jiang, Appl. Phys. Lett. 88, 231101 (2006).
    [CrossRef]
  7. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, Appl. Opt. 41, 4722 (2002).
    [CrossRef] [PubMed]
  8. J. Laufer, C. Elwell, D. Delpy, and P. Beard, Phys. Med. Biol. 50, 4409 (2005).
    [CrossRef] [PubMed]
  9. Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, Opt. Lett. 31, 1827 (2006).
    [CrossRef] [PubMed]
  10. Y. Wang and R. K. Wang, Phys. Med. Biol. 53, 6167 (2008).
    [CrossRef] [PubMed]
  11. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
    [CrossRef] [PubMed]
  12. Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
    [CrossRef] [PubMed]

2009 (1)

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (3)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

2006 (2)

2005 (1)

J. Laufer, C. Elwell, D. Delpy, and P. Beard, Phys. Med. Biol. 50, 4409 (2005).
[CrossRef] [PubMed]

2002 (1)

1988 (1)

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Beard, P.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, Phys. Med. Biol. 50, 4409 (2005).
[CrossRef] [PubMed]

Borer, E.

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Chance, B.

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Delpy, D.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, Phys. Med. Biol. 50, 4409 (2005).
[CrossRef] [PubMed]

Deyo, D. J.

Elwell, C.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, Phys. Med. Biol. 50, 4409 (2005).
[CrossRef] [PubMed]

Esenaliev, R. O.

Evans, A.

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Guo, Z.

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef] [PubMed]

Holtom, G.

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Hu, S.

Jiang, H. B.

Z. Yuan and H. B. Jiang, Appl. Phys. Lett. 88, 231101 (2006).
[CrossRef]

Kent, J.

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Larin, K. V.

Larina, I. V.

Laufer, J.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, Phys. Med. Biol. 50, 4409 (2005).
[CrossRef] [PubMed]

Li, L.

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef] [PubMed]

Maris, M.

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Maslov, K.

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

McCully, K.

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Motamedi, M.

Northrop, J.

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Patrikeev, I. A.

Petrov, Y. Y.

Petrova, I. Y.

Prough, D. S.

Shinkwin, M.

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Wang, L. H. V.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Wang, L. V.

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Wang, R. K.

Y. Wang and R. K. Wang, Phys. Med. Biol. 53, 6167 (2008).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang and R. K. Wang, Phys. Med. Biol. 53, 6167 (2008).
[CrossRef] [PubMed]

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Yuan, Z.

Z. Yuan and H. B. Jiang, Appl. Phys. Lett. 88, 231101 (2006).
[CrossRef]

Zhang, H. F.

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Ann. N.Y. Acad. Sci. (1)

B. Chance, E. Borer, A. Evans, G. Holtom, J. Kent, M. Maris, K. McCully, J. Northrop, and M. Shinkwin, Ann. N.Y. Acad. Sci. 551, 1 (1988).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Z. Yuan and H. B. Jiang, Appl. Phys. Lett. 88, 231101 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, Appl. Phys. Lett. 90, 053901 (2007).
[CrossRef]

Inverse Probl. (1)

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

Med. Phys. (1)

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (3)

J. Laufer, C. Elwell, D. Delpy, and P. Beard, Phys. Med. Biol. 50, 4409 (2005).
[CrossRef] [PubMed]

Y. Wang and R. K. Wang, Phys. Med. Biol. 53, 6167 (2008).
[CrossRef] [PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

Other (1)

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the OR-PAM system and experimental setup. (a) Schematic of the OR-PAM system. (b) The optical focus is much smaller than the targeted blood vessel, whose top surface within the optical focal diameter can, therefore, be approximated as a plane.

Fig. 2
Fig. 2

Quantifying the optical absorption coefficients of ink. (a) Acoustic spectra of PA signals from original and diluted black ink samples. (b) Ratio of the acoustic spectral amplitudes of PA signals from two samples and fitting with the theoretical formula. (c) Fitting result with seven phantoms (without the covered layer) and three samples (with the covered layer). (d) Acoustic spectra measured from the original black ink with and without the covered layer.

Fig. 3
Fig. 3

Quantifying the optical absorption coefficients of ex vivo bovine blood and in vivo blood vessels in a nude mouse ear. (a) Ratios of the acoustic spectral amplitudes of PA signals from oxygenated bovine blood measured ex vivo at various optical wavelengths and fittings with the theoretical formula. (b) Structural image acquired at 570 nm (inset), and ratios of the acoustic spectral amplitudes of PA signals measured in vivo with two optical wavelengths (570 and 561 nm ) from arteries and veins.

Tables (1)

Tables Icon

Table 1 Absorption Coefficients, the Fluence Ratio, the Hemoglobin Concentrations, and the s O 2 Quantified from Two Optical Wavelength Measurements

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

O ( t ) = Γ μ a exp ( μ a c t ) ,
S 1 ( ω ) S 2 ( ω ) = F ( λ 1 ) O 1 ( ω ) H ( ω ) a ( ω ) F ( λ 2 ) O 2 ( ω ) H ( ω ) a ( ω ) = F ( λ 1 ) ( ω / μ a 2 ) 2 + c 2 F ( λ 2 ) ( ω / μ a 1 ) 2 + c 2 ,

Metrics