Abstract

We show that, in a coherent two-level optical amplifier with Kerr nonlinearity and linear loss, any weak seed pulse evolves into a fixed powerful linearly chirped pulse with quasi-parabolic shape. This process is associated with a transition from the incoherent into the coherent amplification regime, thus enabling in practice the generation of pulses with a spectrum wider than the linear gain bandwidth.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura and M. Nakazawa, Opt. Lett. 21, 68 (1996).
    [CrossRef] [PubMed]
  2. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef] [PubMed]
  3. T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, Opt. Lett. 31, 574 (2006).
    [CrossRef] [PubMed]
  4. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, Opt. Lett. 32, 2520(2007).
    [CrossRef] [PubMed]
  5. J. P. Wittke and P. J. Warter, J. Appl. Phys. 35, 1668 (1964).
    [CrossRef]
  6. H. C. Y. Yu, A. Argyros, G. Barton, M. A. van Eijkelenborg, C. Barbe, K. Finnie, L. Kong, F. Ladouceur, and S. McNiven, Opt. Express 15, 9989 (2007).
    [CrossRef] [PubMed]
  7. V. V. Kozlov and É. E. Fradkin, Opt. Lett. 20, 2165(1995).
    [CrossRef] [PubMed]

2007 (2)

2006 (1)

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

1964 (1)

J. P. Wittke and P. J. Warter, J. Appl. Phys. 35, 1668 (1964).
[CrossRef]

Argyros, A.

Barbe, C.

Barton, G.

Cormier, E.

Druon, F.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Finnie, K.

Fradkin, É. E.

Georges, P.

Hanna, M.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Kong, L.

Kozlov, V. V.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Ladouceur, F.

Limpert, J.

McNiven, S.

Mottay, E.

Nakazawa, M.

Nielsen, C. K.

Ortac, B.

Papadopoulos, D. N.

Schreiber, T.

Tamura, K.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Tünnermann, A.

van Eijkelenborg, M. A.

Warter, P. J.

J. P. Wittke and P. J. Warter, J. Appl. Phys. 35, 1668 (1964).
[CrossRef]

Wittke, J. P.

J. P. Wittke and P. J. Warter, J. Appl. Phys. 35, 1668 (1964).
[CrossRef]

Yu, H. C. Y.

Zaouter, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Top) Stationary amplitude α ( t ) and frequency ϕ ˙ ( t ) profiles for four values of the Kerr nonlinearity: ν τ p 2 = 0 , 1, 3, and 7, plotted as solutions of Eq. (11). Time is in units of τ p , Rabi frequency α and frequency ϕ ˙ are in units of τ p 1 . (Bottom) Intensity profile ( α 2 ) for ν = 7 τ p 2 (solid curves), fitted by a parabola (dotted curves), and corresponding spectra for ν τ p 2 = 0 , 3, and 7. Here γ = 0 .

Fig. 2
Fig. 2

Evolution of initial non-phase-modulated Gaussian pulse of duration τ 0 for ν = 3 τ 0 2 , l = 0.2 g , and γ = 0 toward a stationary shape. The seed pulse is not resolved on the main figure, and it is shown in the left inset. Amplitude, frequency, and time are normalized to τ 0 . Numbers on the right show the distance measured in units of the resonant length ( g τ 0 ) 1 .

Fig. 3
Fig. 3

Same as in Fig. 2 for γ τ 0 = 4 with the same seed pulse, demonstrating the dynamic breaking of the linear gain bandwidth barrier ( τ p γ = 1 ), i.e., evolution of the temporal FWHM (shown in the left inset) from τ 0 > γ 1 to τ p < γ 1 . The right inset shows the output inversion profile. Here l = 0.02 g and ν = 0.0125 τ 0 2 .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( z + 1 c t ) Ω + l Ω = g P + i f | Ω | 2 Ω ,
t P = γ P + Ω N ,
t N = 1 2 ( Ω P * + Ω * P ) ,
p = ( l / g ) α ,
q = ( f / g ) α 3 ,
N = N 0 + ( l / g ) τ α 2 d τ ,
ϕ ˙ = ν ( 3 α ˙ α + γ α 2 ) .
( 1 + 3 ν 2 F ˙ 2 ) F ¨ + 2 ( γ ν 2 F ˙ 2 + F τ p 1 ) F ˙ = 0 ,
F ˙ + ν 2 F ˙ 3 = ( J F ) F .
F ˙ = f ¯ ( F ) 1 3 ν 2 ( u + + u ) ,
u ± = η ± η 2 + 1 3
0 F d F f ¯ ( F ) = t d t

Metrics