Abstract

We have systematically measured the differential stress-optic coefficient, ΔC, in a number of poly(methyl methacrylate) (PMMA) fibers drawn with different stress, ranging from 2 up to 27MPa. ΔC was determined in transverse illumination by measuring the dependence of birefringence on additional axial stress applied to the fiber. Our results show that ΔC in PMMA fibers has a negative sign and ranges from 4.5 to 4.5×1012Pa1, depending on the drawing stress. Increase of the drawing stress results in greater initial fiber birefringence and lower ΔC.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike, T. Ishigure, and E. Nihei, J. Lightwave Technol. 13, 1475 (1995).
    [CrossRef]
  2. S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, Meas. Sci. Technol. 18, 3144 (2007).
    [CrossRef]
  3. M. F. Hossain, H. P. Chan, and M. A. Uddin, Appl. Opt. 49, 403 (2010).
    [CrossRef] [PubMed]
  4. H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya, and Y. Koike, Appl. Phys. A. 81, 617 (2005).
    [CrossRef]
  5. T. Koyama, Y. Zhu, T. Otsuka, T. Takada, and Y. Murooka, in Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (1998).
    [PubMed]
  6. W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, Polymer Testing 24, 900 (2005).
    [CrossRef]
  7. R. M. Waxler, D. Horowitz, and A. Feldman, Appl. Opt. 18, 101 (1979).
    [CrossRef] [PubMed]
  8. M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, and I. Bennion, Opt. Lett. 30, 3129 (2005).
    [CrossRef] [PubMed]
  9. D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
    [CrossRef]
  10. W. Urbanczyk and K. Pietraszkiewicz, Appl. Opt. 27, 4117 (1988).
    [CrossRef] [PubMed]
  11. W. Primak and D. Post, J. Appl. Phys. 30, 779(1959).
    [CrossRef]

2010 (1)

2007 (1)

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, Meas. Sci. Technol. 18, 3144 (2007).
[CrossRef]

2005 (3)

H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya, and Y. Koike, Appl. Phys. A. 81, 617 (2005).
[CrossRef]

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, Polymer Testing 24, 900 (2005).
[CrossRef]

M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, and I. Bennion, Opt. Lett. 30, 3129 (2005).
[CrossRef] [PubMed]

1995 (1)

Y. Koike, T. Ishigure, and E. Nihei, J. Lightwave Technol. 13, 1475 (1995).
[CrossRef]

1988 (1)

1979 (1)

1976 (1)

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

1959 (1)

W. Primak and D. Post, J. Appl. Phys. 30, 779(1959).
[CrossRef]

Barton, J. S.

Bennion, I.

Chan, H. P.

Dobb, H.

Feldman, A.

Fender, A.

Hassan, T.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, Meas. Sci. Technol. 18, 3144 (2007).
[CrossRef]

Horowitz, D.

Hossain, M. F.

Ishibashi, K.

H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya, and Y. Koike, Appl. Phys. A. 81, 617 (2005).
[CrossRef]

Ishigure, T.

Y. Koike, T. Ishigure, and E. Nihei, J. Lightwave Technol. 13, 1475 (1995).
[CrossRef]

Jin, G. C.

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, Polymer Testing 24, 900 (2005).
[CrossRef]

Jones, J. D. C.

Karapanos, D.

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

Kiesel, S.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, Meas. Sci. Technol. 18, 3144 (2007).
[CrossRef]

Koike, Y.

H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya, and Y. Koike, Appl. Phys. A. 81, 617 (2005).
[CrossRef]

Y. Koike, T. Ishigure, and E. Nihei, J. Lightwave Technol. 13, 1475 (1995).
[CrossRef]

Kowalsky, M.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, Meas. Sci. Technol. 18, 3144 (2007).
[CrossRef]

Koyama, T.

T. Koyama, Y. Zhu, T. Otsuka, T. Takada, and Y. Murooka, in Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (1998).
[PubMed]

MacPherson, W. N.

Murooka, Y.

T. Koyama, Y. Zhu, T. Otsuka, T. Takada, and Y. Murooka, in Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (1998).
[PubMed]

Nihei, E.

Y. Koike, T. Ishigure, and E. Nihei, J. Lightwave Technol. 13, 1475 (1995).
[CrossRef]

Ohkita, H.

H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya, and Y. Koike, Appl. Phys. A. 81, 617 (2005).
[CrossRef]

Otsuka, T.

T. Koyama, Y. Zhu, T. Otsuka, T. Takada, and Y. Murooka, in Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (1998).
[PubMed]

Peters, K.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, Meas. Sci. Technol. 18, 3144 (2007).
[CrossRef]

Pietraszkiewicz, K.

Post, D.

W. Primak and D. Post, J. Appl. Phys. 30, 779(1959).
[CrossRef]

Primak, W.

W. Primak and D. Post, J. Appl. Phys. 30, 779(1959).
[CrossRef]

Raftopoulos, D. D.

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

Silva-López, M.

Tagaya, A.

H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya, and Y. Koike, Appl. Phys. A. 81, 617 (2005).
[CrossRef]

Takada, T.

T. Koyama, Y. Zhu, T. Otsuka, T. Takada, and Y. Murooka, in Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (1998).
[PubMed]

Theocaris, P. S.

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

Tsurumoto, D.

H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya, and Y. Koike, Appl. Phys. A. 81, 617 (2005).
[CrossRef]

Uddin, M. A.

Urbanczyk, W.

Waxler, R. M.

Webb, D. J.

Xu, W.

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, Polymer Testing 24, 900 (2005).
[CrossRef]

Yao, X. F.

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, Polymer Testing 24, 900 (2005).
[CrossRef]

Yeh, H. Y.

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, Polymer Testing 24, 900 (2005).
[CrossRef]

Zhang, L.

Zhao, D.

Zhu, Y.

T. Koyama, Y. Zhu, T. Otsuka, T. Takada, and Y. Murooka, in Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (1998).
[PubMed]

Appl. Opt. (3)

Appl. Phys. A. (1)

H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya, and Y. Koike, Appl. Phys. A. 81, 617 (2005).
[CrossRef]

J. Appl. Phys. (1)

W. Primak and D. Post, J. Appl. Phys. 30, 779(1959).
[CrossRef]

J. Lightwave Technol. (1)

Y. Koike, T. Ishigure, and E. Nihei, J. Lightwave Technol. 13, 1475 (1995).
[CrossRef]

J. Phys. D (1)

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

Meas. Sci. Technol. (1)

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, Meas. Sci. Technol. 18, 3144 (2007).
[CrossRef]

Opt. Lett. (1)

Polymer Testing (1)

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, Polymer Testing 24, 900 (2005).
[CrossRef]

Other (1)

T. Koyama, Y. Zhu, T. Otsuka, T. Takada, and Y. Murooka, in Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (1998).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for measuring retardation distribution, λ = 526 nm .

Fig. 2
Fig. 2

Distribution of birefringence σ z Δ C = n x n z , reconstructed from measured retardation for different values of applied axial stress σ z applied in the PMMA fiber indicated as 1 b .

Fig. 3
Fig. 3

Dependence of birefringence σ z Δ C = n x n z in selected PMMA fibers versus applied axial stress. The stress-optic coefficients Δ C were obtained by fitting to the linear part of the measured characteristics.

Fig. 4
Fig. 4

Dependence of the stress-optic coefficient upon drawing stress in the PMMA fibers. Measurements before and after annealing were carried out for fibers with different cross sections and, as a result, the drawing stress for corresponding fibers is not the same.

Fig. 5
Fig. 5

Stress-optic coefficient as a function of initial fiber birefringence for the PMMA fibers from Table 1. Measurements before and after annealing were carried out for fibers with different cross sections and, as a result, the drawing stress for corresponding fibers is not the same.

Tables (1)

Tables Icon

Table 1 Parameters of the Investigated Fibers a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ z ( r ) Δ C = 1 π r r 0 d R ( x ) / d x x 2 r 2 d x ,
n z = n + C 1 σ z , n Θ = n + C 2 σ z , n r = n + C 2 σ z ,
n x n z = Δ C σ z ,

Metrics