Abstract

Angular diversity is a successful speckle-reduction technique in optical coherence tomography (OCT). We employ angle-dependent detection for a different purpose: to distinguish the singly backscattered and multiply scattered signal components. Single backscattering is highly correlated over a large range of detection angles; multiple scattering rapidly decorrelates as the angle is varied. Theoretical justification is provided using a linear-systems description of the OCT imaging process; detection of multiple scattering is corroborated experimentally.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, in Optical Coherence Tomography: Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), pp. 119–146.
  2. S. G. Adie, T. R. Hillman, and D. D. Sampson, Opt. Express 15, 18033 (2007).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, Phys. Med. Biol. 42, 1427 (1997).
    [CrossRef] [PubMed]
  4. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, Opt. Express 14, 4736 (2006).
    [CrossRef] [PubMed]
  5. M. Hughes, M. Spring, and A. Podoleanu, Appl. Opt. 49, 99 (2010).
    [CrossRef] [PubMed]
  6. A. Curatolo, T. R. Hillman, B. F. Kennedy, and D. D. Sampson, in Proceedings of IEEE Conference on Photonics Society Winter Topical (IEEE, 2010), pp. 61–62.
  7. M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge U. Press, .1999).
  8. J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
    [CrossRef]

2010 (1)

2007 (1)

2006 (1)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

1997 (1)

J. M. Schmitt, Phys. Med. Biol. 42, 1427 (1997).
[CrossRef] [PubMed]

Adie, S. G.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge U. Press, .1999).

Bouma, B. E.

Curatolo, A.

A. Curatolo, T. R. Hillman, B. F. Kennedy, and D. D. Sampson, in Proceedings of IEEE Conference on Photonics Society Winter Topical (IEEE, 2010), pp. 61–62.

Desjardins, A. E.

Fercher, A. F.

A. F. Fercher, in Optical Coherence Tomography: Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), pp. 119–146.

Hillman, T. R.

S. G. Adie, T. R. Hillman, and D. D. Sampson, Opt. Express 15, 18033 (2007).
[CrossRef] [PubMed]

A. Curatolo, T. R. Hillman, B. F. Kennedy, and D. D. Sampson, in Proceedings of IEEE Conference on Photonics Society Winter Topical (IEEE, 2010), pp. 61–62.

Hughes, M.

Kennedy, B. F.

A. Curatolo, T. R. Hillman, B. F. Kennedy, and D. D. Sampson, in Proceedings of IEEE Conference on Photonics Society Winter Topical (IEEE, 2010), pp. 61–62.

Podoleanu, A.

Sampson, D. D.

S. G. Adie, T. R. Hillman, and D. D. Sampson, Opt. Express 15, 18033 (2007).
[CrossRef] [PubMed]

A. Curatolo, T. R. Hillman, B. F. Kennedy, and D. D. Sampson, in Proceedings of IEEE Conference on Photonics Society Winter Topical (IEEE, 2010), pp. 61–62.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

J. M. Schmitt, Phys. Med. Biol. 42, 1427 (1997).
[CrossRef] [PubMed]

Spring, M.

Tearney, G. J.

Vakoc, B. J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge U. Press, .1999).

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

Appl. Opt. (1)

J. Biomed. Opt. (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

Opt. Express (2)

Phys. Med. Biol. (1)

J. M. Schmitt, Phys. Med. Biol. 42, 1427 (1997).
[CrossRef] [PubMed]

Other (3)

A. F. Fercher, in Optical Coherence Tomography: Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), pp. 119–146.

A. Curatolo, T. R. Hillman, B. F. Kennedy, and D. D. Sampson, in Proceedings of IEEE Conference on Photonics Society Winter Topical (IEEE, 2010), pp. 61–62.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge U. Press, .1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustrations for angle-dependent B-scan acquisition. (a) Beam probing (L) low- and (H) high-scatterer-concentration sample (beam not to scale). (b) Transverse- and (c) axial-plane views of iris positions with respect to the backscattered beam. Positions (i)–(iii) represent the iris-position choices for Fig. 2.

Fig. 2
Fig. 2

Partial B-scans for the more scattering sample (H) at the three iris positions indicated in Fig. 1b, displayed using a logarithmic gray scale. The horizontal lines indicate the three optical depths chosen for Fig. 3. The ellipses highlight prominent features (speckle), which may be used as a visual guide for interpreting the correlation magnitudes.

Fig. 3
Fig. 3

Measured correlation coefficient moduli versus iris displacement, for the samples with low (L) and high (H) scatterer concentrations, at the depths indicated in the legend. The theoretical curves represent the SB and MS extremes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ ( k ; P ) = FT { Ψ ( r ) } = 0 ς ( k ; k λ , P ) PSD ( k λ ) d k λ ,
μ 1 , 2 , SB = I 1 , 2 / ( I 1 , 1 I 2 , 2 ) 1 / 2 ,
μ 1 , 2 , MS = [ 2 θ sin ( 2 θ ) ] / π ,

Metrics