Abstract

Continuous-wave laser operation at 1060.2nm was demonstrated in polymer channel waveguides doped with a Nd complex above an absorbed pump threshold of 50mW. The highest slope efficiency of 2.15% was obtained with 5% outcoupling, resulting in a maximum output power of 0.98mW. Lasing was also achieved on the quasi-three-level 878nm transition above a threshold of 74.5mW. A slope efficiency of 0.35% and an output power of 190μm were obtained with 2.2% outcoupling. Long-term, stable cw laser operation over at least 2h was demonstrated, indicating the durability of the polymer gain medium.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
    [CrossRef] [PubMed]
  2. A. Costela, I. García-Moreno, and R. Sastre, Phys. Chem. Chem. Phys. 5, 4745 (2003).
    [CrossRef]
  3. L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
    [CrossRef]
  4. B. Whittaker, Nature 228, 157 (1970).
    [CrossRef] [PubMed]
  5. H. Taniguchi, J. Kido, M. Nishiya, and S. Sasaki, Appl. Phys. Lett. 67, 1060 (1995).
    [CrossRef]
  6. J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, Opt. Lett. 34, 473 (2009).
    [CrossRef] [PubMed]
  7. J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, IEEE J. Quantum Electron. 46, 1043 (2010).
  8. M. B. J. Diemeer, L. T. H. Hilderink, R. Dekker, and A. Driessen, IEEE Photonics Technol. Lett. 18, 1624 (2006).
    [CrossRef]
  9. D. Findley and R. A. Clay, Phys. Lett. 20, 277 (1966).
    [CrossRef]
  10. W. P. Risk, J. Opt. Soc. Am. B 5, 1412 (1988).
    [CrossRef]

2009

2007

I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
[CrossRef] [PubMed]

2006

M. B. J. Diemeer, L. T. H. Hilderink, R. Dekker, and A. Driessen, IEEE Photonics Technol. Lett. 18, 1624 (2006).
[CrossRef]

2003

A. Costela, I. García-Moreno, and R. Sastre, Phys. Chem. Chem. Phys. 5, 4745 (2003).
[CrossRef]

2002

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

1995

H. Taniguchi, J. Kido, M. Nishiya, and S. Sasaki, Appl. Phys. Lett. 67, 1060 (1995).
[CrossRef]

1988

1970

B. Whittaker, Nature 228, 157 (1970).
[CrossRef] [PubMed]

1966

D. Findley and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Clay, R. A.

D. Findley and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Costela, A.

A. Costela, I. García-Moreno, and R. Sastre, Phys. Chem. Chem. Phys. 5, 4745 (2003).
[CrossRef]

Dekker, R.

M. B. J. Diemeer, L. T. H. Hilderink, R. Dekker, and A. Driessen, IEEE Photonics Technol. Lett. 18, 1624 (2006).
[CrossRef]

Diemeer, M. B. J.

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, Opt. Lett. 34, 473 (2009).
[CrossRef] [PubMed]

M. B. J. Diemeer, L. T. H. Hilderink, R. Dekker, and A. Driessen, IEEE Photonics Technol. Lett. 18, 1624 (2006).
[CrossRef]

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, IEEE J. Quantum Electron. 46, 1043 (2010).

Driessen, A.

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, Opt. Lett. 34, 473 (2009).
[CrossRef] [PubMed]

M. B. J. Diemeer, L. T. H. Hilderink, R. Dekker, and A. Driessen, IEEE Photonics Technol. Lett. 18, 1624 (2006).
[CrossRef]

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, IEEE J. Quantum Electron. 46, 1043 (2010).

Findley, D.

D. Findley and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

García-Moreno, I.

A. Costela, I. García-Moreno, and R. Sastre, Phys. Chem. Chem. Phys. 5, 4745 (2003).
[CrossRef]

Geskus, D.

Hebbink, G. A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

Hilderink, L. T. H.

M. B. J. Diemeer, L. T. H. Hilderink, R. Dekker, and A. Driessen, IEEE Photonics Technol. Lett. 18, 1624 (2006).
[CrossRef]

Hofstraat, J. W.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

Kido, J.

H. Taniguchi, J. Kido, M. Nishiya, and S. Sasaki, Appl. Phys. Lett. 67, 1060 (1995).
[CrossRef]

Klink, S. I.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

Nishiya, M.

H. Taniguchi, J. Kido, M. Nishiya, and S. Sasaki, Appl. Phys. Lett. 67, 1060 (1995).
[CrossRef]

Pollnau, M.

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, Opt. Lett. 34, 473 (2009).
[CrossRef] [PubMed]

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, IEEE J. Quantum Electron. 46, 1043 (2010).

Polman, A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

Reinhoudt, D. N.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

Risk, W. P.

Samuel, I. D. W.

I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
[CrossRef] [PubMed]

Sasaki, S.

H. Taniguchi, J. Kido, M. Nishiya, and S. Sasaki, Appl. Phys. Lett. 67, 1060 (1995).
[CrossRef]

Sastre, R.

A. Costela, I. García-Moreno, and R. Sastre, Phys. Chem. Chem. Phys. 5, 4745 (2003).
[CrossRef]

Sengo, G.

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, Opt. Lett. 34, 473 (2009).
[CrossRef] [PubMed]

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, IEEE J. Quantum Electron. 46, 1043 (2010).

Slooff, L. H.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

Taniguchi, H.

H. Taniguchi, J. Kido, M. Nishiya, and S. Sasaki, Appl. Phys. Lett. 67, 1060 (1995).
[CrossRef]

Turnbull, G. A.

I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
[CrossRef] [PubMed]

van Blaaderen, A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

Van Veggel, F. C. J. M.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

Whittaker, B.

B. Whittaker, Nature 228, 157 (1970).
[CrossRef] [PubMed]

Yang, J.

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, Opt. Lett. 34, 473 (2009).
[CrossRef] [PubMed]

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, IEEE J. Quantum Electron. 46, 1043 (2010).

Appl. Phys. Lett.

H. Taniguchi, J. Kido, M. Nishiya, and S. Sasaki, Appl. Phys. Lett. 67, 1060 (1995).
[CrossRef]

Chem. Rev.

I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, IEEE J. Quantum Electron. 46, 1043 (2010).

IEEE Photonics Technol. Lett.

M. B. J. Diemeer, L. T. H. Hilderink, R. Dekker, and A. Driessen, IEEE Photonics Technol. Lett. 18, 1624 (2006).
[CrossRef]

J. Appl. Phys.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Nature

B. Whittaker, Nature 228, 157 (1970).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Chem. Chem. Phys.

A. Costela, I. García-Moreno, and R. Sastre, Phys. Chem. Chem. Phys. 5, 4745 (2003).
[CrossRef]

Phys. Lett.

D. Findley and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser spectra originating from the Nd-doped polymer channel waveguides for the quasi-three-level ( F 3 / 2 4 I 9 / 2 4 ) and four-level ( F 3 / 2 4 I 11 / 2 4 ) transitions near 878.0 nm and 1060.2 nm , respectively.

Fig. 2
Fig. 2

Output power as a function of absorbed pump power for the four-level and quasi-three-level laser transitions at 1060.2 nm (filled symbols) and 878.0 nm (open symbols), respectively.

Fig. 3
Fig. 3

Plot of P th / ( 2 l ) as a function of ln ( R 1 R 2 ) / ( 2 l ) . The intercept with the abscissa provides the propagation attenuation coefficient α L .

Fig. 4
Fig. 4

Laser output power as a function of operation time for different absorbed pump power regimes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P th = K [ ( 2 α L l ) ln ( R 1 R 2 ) ] ,
η = ( λ P λ L ) ( ln ( R 2 ) ln ( R 1 R 2 ) + 2 l α L ) η q η o ,

Metrics