Abstract

We restudy the influence of beam wander on the uplink of ground-to-satellite laser communication, using the effective pointing error method, for a collimated untracked Gaussian beam under a weak atmospheric turbulence condition. It shows that the beam wander may cause significant increase in bit error rate (BER), and there exists an optimal transmitter radius for minimizing the value of BER. Further studies manifest that this optimal radius only changes with the laser wavelength and zenith angle, while independent on the satellite altitude and the fade threshold at the receiver. These results can be used in system design and optimization for the transmitter.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
    [CrossRef]
  2. G. J. Baker and R. S. Benson, Proc. SPIE 5550, 225 (2004).
    [CrossRef]
  3. F. Dios, J. A. Rubio, A. Rodríguez, and A. Comerón, Appl. Opt. 43, 3866 (2004).
    [CrossRef] [PubMed]
  4. A. Rodriguez-Gomez, F. Dios, J. A. Rubio, and A. Comeron, Appl. Opt. 44, 4574 (2005).
    [CrossRef] [PubMed]
  5. L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, Opt. Eng. 45, 076001 (2006).
    [CrossRef]
  6. J. Ma, Y. Jiang, L. Tan, S. Yu, and W. Du, Opt. Lett. 33, 2611 (2008).
    [CrossRef] [PubMed]
  7. R. R. Beland, in The Infrared and Electro-Optical Systems Handbook, F.G.Smith, ed. (SPIE, 1993).

2008 (1)

2006 (1)

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, Opt. Eng. 45, 076001 (2006).
[CrossRef]

2005 (1)

2004 (2)

Andrews, L. C.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, Opt. Eng. 45, 076001 (2006).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
[CrossRef]

Baker, G. J.

G. J. Baker and R. S. Benson, Proc. SPIE 5550, 225 (2004).
[CrossRef]

Beland, R. R.

R. R. Beland, in The Infrared and Electro-Optical Systems Handbook, F.G.Smith, ed. (SPIE, 1993).

Benson, R. S.

G. J. Baker and R. S. Benson, Proc. SPIE 5550, 225 (2004).
[CrossRef]

Comeron, A.

Comerón, A.

Dios, F.

Du, W.

Jiang, Y.

Ma, J.

Parenti, R. R.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, Opt. Eng. 45, 076001 (2006).
[CrossRef]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, Opt. Eng. 45, 076001 (2006).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
[CrossRef]

Rodríguez, A.

Rodriguez-Gomez, A.

Rubio, J. A.

Sasiela, R. J.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, Opt. Eng. 45, 076001 (2006).
[CrossRef]

Tan, L.

Yu, S.

Appl. Opt. (2)

Opt. Eng. (1)

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, Opt. Eng. 45, 076001 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

G. J. Baker and R. S. Benson, Proc. SPIE 5550, 225 (2004).
[CrossRef]

Other (2)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
[CrossRef]

R. R. Beland, in The Infrared and Electro-Optical Systems Handbook, F.G.Smith, ed. (SPIE, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

BER as a function of (a) F T for W 0 = 7 cm and (b) W 0 for F T = 5 dB .

Fig. 2
Fig. 2

(a) Existence of W m . (b) W m as a function of wavelength λ, when ζ = 0 . (c) σ B u (decreasing curves) and σ B W (increasing curves) as functions of W 0 for different zenith angle ζ (solid curves: ζ = 0 ; dashed curves: ζ = 30 ° ; dashed-dotted curves: ζ = 60 ° ). (d) W m as a function of zenith angle ζ. In (a), (c), and (d), λ = 1550 nm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

BER = 1 4 erfc [ 0.23 F T 1 2 σ 1 2 ( r , L ) 2 r 2 W L T 2 2 σ I ( r , L ) ] ,
σ B W 2 = 5.95 ( H h 0 ) 2 sec 2 ( ζ ) ( 2 W 0 r 0 ) 5 / 3 ( σ p e W L ) 2 = 79.9 ( W 0 r 0 ) 10 / 3 [ 1 ( 4 π 2 W 0 2 / r 0 2 1 + 4 π 2 W 0 2 / r 0 2 ) 1 / 6 ] ,
σ B u 2 8.70 sec 11 / 6 ( ζ ) 0 H 0 d h C n 2 ( h ) { ( k 12 / 5 W 0 2 2 sec ( ζ ) ) 5 / 6 + cos [ 5 6 cot 1 ( k W 0 2 2 h sec ( ζ ) ) ] [ ( k 12 / 5 W 0 2 2 sec ( ζ ) ) 2 + h 2 k 14 / 5 ] 5 / 12 } .

Metrics