Abstract

Depth from focus (DFF) is a technique to estimate the depth and 3D shape of an object from a sequence of images obtained at different focus settings. The DFF is presented as a combinatorial optimization problem. After the estimate of the initial depth map solution of an object, the algorithm updates the depth map iteratively from the specially defined neighborhood. The results of the proposed DFF algorithm have shown significant improvements in both the accuracy of the depth map estimation and the computational complexity, with respect to the existing DFF methods.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. N. Simonov and M. C. Rombach, Opt. Lett. 34, 2111 (2009).
    [CrossRef] [PubMed]
  2. S. Nayar and Y. Nakagawa, IEEE Trans. Pattern Anal. Mach. Intell. 16, 824 (1994).
    [CrossRef]
  3. S. Zhang, Opt. Lett. 35, 934 (2010).
    [CrossRef] [PubMed]
  4. V. Aslantas and D. T. Pham, Opt. Express 15, 1011 (2007).
    [CrossRef] [PubMed]
  5. M. Subbarao and T. S. Choi, IEEE Trans. Pattern Anal. Mach. Intell. 17, 266 (1995).
    [CrossRef]
  6. M. B. Ahmad and T. S. Choi, IEEE Trans. Circuits Syst. Video Technol. 15, 566 (2005).
    [CrossRef]
  7. B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 2nd ed. (Springer, 2002).
  8. R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, Discrete Appl. Math. 123, 75 (2002).
    [CrossRef]
  9. A. S. Malik and T. S. Choi, Pattern Recogn. 40, 154 (2007).
    [CrossRef]

2010 (1)

2009 (1)

2007 (2)

V. Aslantas and D. T. Pham, Opt. Express 15, 1011 (2007).
[CrossRef] [PubMed]

A. S. Malik and T. S. Choi, Pattern Recogn. 40, 154 (2007).
[CrossRef]

2005 (1)

M. B. Ahmad and T. S. Choi, IEEE Trans. Circuits Syst. Video Technol. 15, 566 (2005).
[CrossRef]

2002 (1)

R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, Discrete Appl. Math. 123, 75 (2002).
[CrossRef]

1995 (1)

M. Subbarao and T. S. Choi, IEEE Trans. Pattern Anal. Mach. Intell. 17, 266 (1995).
[CrossRef]

1994 (1)

S. Nayar and Y. Nakagawa, IEEE Trans. Pattern Anal. Mach. Intell. 16, 824 (1994).
[CrossRef]

Ahmad, M. B.

M. B. Ahmad and T. S. Choi, IEEE Trans. Circuits Syst. Video Technol. 15, 566 (2005).
[CrossRef]

Ahuja, R. K.

R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, Discrete Appl. Math. 123, 75 (2002).
[CrossRef]

Aslantas, V.

Choi, T. S.

A. S. Malik and T. S. Choi, Pattern Recogn. 40, 154 (2007).
[CrossRef]

M. B. Ahmad and T. S. Choi, IEEE Trans. Circuits Syst. Video Technol. 15, 566 (2005).
[CrossRef]

M. Subbarao and T. S. Choi, IEEE Trans. Pattern Anal. Mach. Intell. 17, 266 (1995).
[CrossRef]

Ergun, O.

R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, Discrete Appl. Math. 123, 75 (2002).
[CrossRef]

Korte, B.

B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 2nd ed. (Springer, 2002).

Malik, A. S.

A. S. Malik and T. S. Choi, Pattern Recogn. 40, 154 (2007).
[CrossRef]

Nakagawa, Y.

S. Nayar and Y. Nakagawa, IEEE Trans. Pattern Anal. Mach. Intell. 16, 824 (1994).
[CrossRef]

Nayar, S.

S. Nayar and Y. Nakagawa, IEEE Trans. Pattern Anal. Mach. Intell. 16, 824 (1994).
[CrossRef]

Orlin, J. B.

R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, Discrete Appl. Math. 123, 75 (2002).
[CrossRef]

Pham, D. T.

Punnen, A. P.

R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, Discrete Appl. Math. 123, 75 (2002).
[CrossRef]

Rombach, M. C.

Simonov, A. N.

Subbarao, M.

M. Subbarao and T. S. Choi, IEEE Trans. Pattern Anal. Mach. Intell. 17, 266 (1995).
[CrossRef]

Vygen, J.

B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 2nd ed. (Springer, 2002).

Zhang, S.

Discrete Appl. Math. (1)

R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, Discrete Appl. Math. 123, 75 (2002).
[CrossRef]

IEEE Trans. Circuits Syst. Video Technol. (1)

M. B. Ahmad and T. S. Choi, IEEE Trans. Circuits Syst. Video Technol. 15, 566 (2005).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

S. Nayar and Y. Nakagawa, IEEE Trans. Pattern Anal. Mach. Intell. 16, 824 (1994).
[CrossRef]

M. Subbarao and T. S. Choi, IEEE Trans. Pattern Anal. Mach. Intell. 17, 266 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Pattern Recogn. (1)

A. S. Malik and T. S. Choi, Pattern Recogn. 40, 154 (2007).
[CrossRef]

Other (1)

B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 2nd ed. (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

3D depth estimation process of the proposed algorithm.

Fig. 2
Fig. 2

DFF results on real cone (left column) and TFT-LCD color filter (right column) based on DFF-FIS (first row), DFF-DP (second row), and DFF-LS (third row).

Tables (1)

Tables Icon

Table 1 Comparison of RMSE Values on Simulated Cone at Each Stage of Iterations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D = v f v f ,
D [ 0 ] ( i , j ) = arg max k FM ( i , j , k ) , 1 i I , 1 j J , 1 k K ,
N [ 0 ] ( i , j ) = { k | D [ 0 ] ( i , j ) b k D [ 0 ] ( i , j ) + b } ,
g temp ( i , j , k ) = g ( i , j , N [ 0 ] ( i , j ) ) , 1 i I , 1 j J , 1 k ( 2 b + 1 ) .
D temp ( i , j ) = arg max k FM temp ( i , j , k ) , 1 i I , 1 j J , 1 k ( 2 b + 1 ) .
D [ 1 ] ( i , j ) = D [ 0 ] ( i , j ) + ( D temp ( i , j ) ( 1 + b ) ) ,

Metrics