Abstract

We present a novel materials concept for optical inscription of stable birefringent optical elements into guest–host type polymers by making use of chromophore aggregation. The method is based on photoalignment of azobenzene chromophores, the aggregation of which leads to significant enhancement and stabilization of the photoinduced birefringence. The obtained order parameter of the molecular alignment (0.3) in combination with the exceptional thermal stability of the anisotropy renders the material system unique among amorphous azobenzene-containing polymers and provides a route toward designing efficient photoresponsive optical elements through the guest–host type approach.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores

S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer
J. Opt. Soc. Am. B 15(9) 2473-2475 (1998)

Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage

Lian L. Nedelchev, Avtar S. Matharu, Søren Hvilsted, and P. S. Ramanujam
Appl. Opt. 42(29) 5918-5927 (2003)

Electro-optic characterization of nonlinear-optical guest–host films and polymers

G. Khanarian, J. Sounik, D. Allen, S. F. Shu, C. Walton, H. Goldberg, and J. B. Stamatoff
J. Opt. Soc. Am. B 13(9) 1927-1934 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription