Abstract

Focal modulation microscopy is an emerging fluorescence microscopy technique for in vivo imaging of thick biological tissues. Here, we present a theoretical study to assess its performance. The scalar diffraction theory is combined with Monte Carlo simulation to evaluate the signal-to-background ratio at various depths. The performance of confocal microscopy with a similar optical setup is also evaluated for comparison.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Chen, C. Wong, and C. J. Sheppard, Opt. Express 16, 18764 (2008).
    [CrossRef]
  2. C. H. Wong, S. P. Chong, C. J. R. Sheppard, and N. Chen, Appl. Opt. 48, 3237 (2009).
    [CrossRef] [PubMed]
  3. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  4. J. M. Schmitt, A. Knüttle, and M. Yadlowsky, J. Opt. Soc. Am. A 11, 2226 (1994).
    [CrossRef]

2009 (1)

2008 (1)

1994 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Ballistic and diffusive excitation rates for an imaging depth of 400 μm . See the text for details.

Fig. 2
Fig. 2

Scattered detection efficiency as a function of (a) focal point or (b) molecular target position.

Fig. 3
Fig. 3

(a) FMM signals I FMM B B (dashed-dotted) and I FMM S B (asterisks) compared with CM signals I CM B B (solid), I CM B K (dashed), I CM S B (diamonds), I CM BS (circles), and I CM S S (pluses); (b) SBR for FMM (circles) and CM (asterisks).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E CM ( r F , r M ) = E CMB ( r F , r M ) + E CMS ( r F , r M ) ,
E CMB ( r F , r M ) = e μ t z M μ a C | 0 1 J 0 ( v ξ ) e i u ξ 2 / 2 ξ d ξ | 2 .
E FMM ( r F , r M ) = e μ t z M μ a C { | 0 1 J 0 ( v ξ ) e i u ξ 2 / 2 ξ d ξ | 2 | 0 0.707 J 0 ( v ξ ) e i u ξ 2 / 2 ξ d ξ 0.707 1 J 0 ( v ξ ) e i u ξ 2 / 2 ξ d ξ | 2 } .
D B ( r F , r M ) = 1 cos θ 2 e μ t z M C S d x d y | 0 1 J 0 ( v ξ ) e i u ξ 2 / 2 ξ d ξ | 2 ,
I CM ( r F ) = d r M { E CMB ( r F , r M ) + E CMS ( r F , r M ) } × { D B ( r F , r M ) + D S ( r F , r M ) } = I CM B B ( r F ) + I CM S B ( r F ) + I CM B S ( r F ) + I CM S S ( r F ) .
SBR CM = I CM B B I CM B S + I CM S B + I CM S S = d r M E CMB ( r F , r M ) D B ( r F , r M ) d r M { E CMB ( r F , r M ) D S ( r F , r M ) + E CMS ( r F , r M ) D B ( r F , r M ) + E CMS ( r F , r M ) D S ( r F , r M ) } .
I FMM ( r F ) = d r M { E FMM ( r F , r M ) D B ( r F , r M ) + E FMM ( r F , r M ) D S ( r F , r M ) } , = I FMM B B ( r F ) + I FMM S B ( r F ) ,
SBR FMM = I FMM B B I FMM S B = d r M E FMM ( r F , r M ) D B ( r F , r M ) d r M E FMM ( r F , r M ) D S ( r F , r M ) .

Metrics