Abstract

Acousto-optic imaging is based on ultrasound modulation of multiply scattered light in thick media. We experimentally demonstrate the possibility to perform a self-adaptive wavefront holographic detection at 790nm, within the optical therapeutic window where absorption of biological tissues is minimized. A high-gain Te-doped Sn2P2S6 crystal is used for this purpose. Optical absorbing objects embedded within a thick scattering phantom are imaged by use of pulsed ultrasound to get a dynamic millimetric axial resolution. Our technique represents an interesting approach for breast cancer detection.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Leutz and G. Maret, Physica B 204, 14 (1995).
    [CrossRef]
  2. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. A 14, 1151 (1997).
    [CrossRef]
  3. W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
    [CrossRef]
  4. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, Opt. Lett. 24, 181 (1999).
    [CrossRef]
  5. G. Rousseau, A. Blouin, and J. P. Monchalin, Opt. Lett. 34, 3445 (2009).
    [CrossRef] [PubMed]
  6. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, Opt. Lett. 30, 1360 (2005).
    [CrossRef] [PubMed]
  7. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, Opt. Lett. 29, 2509 (2004).
    [CrossRef] [PubMed]
  8. F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, Opt. Express 12, 5469 (2004).
    [CrossRef] [PubMed]
  9. G. Rousseau, A. Blouin, and J. P. Monchalin, Opt. Express 16, 12577 (2008).
    [CrossRef] [PubMed]
  10. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. Vysochanskii, J. Opt. Soc. Am. B 24, 1535(2007).
    [CrossRef]
  11. M. Jazbinsek, D. Haertle, G. Montemezzani, P. Günter, A. Grabar, I. Stoika, and Y. Vysochanskii, J. Opt. Soc. Am. B 22, 2459 (2005).
    [CrossRef]
  12. E. Bossy, L. Sui, T. W. Murray, and R. A. Roy, Opt. Lett. 30, 744 (2005).
    [CrossRef] [PubMed]
  13. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, Opt. Express 15, 1030 (2007).
    [CrossRef] [PubMed]
  14. M. Lesaffre, S. Farahi, M. Gross, P. Delaye, A. C. Boccara, and F. Ramaz, Opt. Express 17, 18211 (2009).
    [CrossRef] [PubMed]

2009

2008

2007

2005

2004

1999

1997

1995

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

1990

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Atlan, M.

Bach, T.

Blonigen, F.

Blouin, A.

Boccara, A. C.

Bossy, E.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Delaye, P.

DiMarzio, C. A.

Farahi, S.

Forget, B. C.

Genack, A. Z.

Grabar, A.

Grabar, A. A.

Gross, M.

Günter, P.

Haertle, D.

Jazbinsek, M.

Jean, F.

Kempe, M.

Larionov, M.

Lebec, M.

Lesaffre, M.

Leutz, W.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Leveque, S.

Maguluri, G.

Maret, G.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Monchalin, J. P.

Montemezzani, G.

Murray, T. W.

Nieva, A.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Ramaz, F.

Roosen, G.

Rousseau, G.

Roy, R. A.

Saint-Jalmes, H.

Stoika, I.

Sui, L.

Vysochanskii, Y.

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Zaslavsky, D.

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Physica B

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: HWP, half-wave plate; PBS, polarizing beam splitter; AOM1, AOM2, AO, modulators; ω AOM 1 , ω AOM 2 , shifting frequencies, RB, reference beam; SB, signal or object beam; BB, beam-blocker; L1, lens; L2, L3, L4, L5, wide-aperture aspherical lenses; PD, photodiode; LNPA, low-noise preamplifier.

Fig. 2
Fig. 2

Measured photorefractive two-wave-mixing gain Γ of the SPS:Te crystal as a function of the reference beam intensity (grating spacing, Λ = 1 μm ; wavelength, λ = 790 nm ).

Fig. 3
Fig. 3

Axial AO profile of an ink-absorbing inclusion ( x × y × z = 3 mm × 4 mm × 3 mm ) embedded in a 10% intralipid and agar scattering phantom ( thickness = 2.3 cm , μ s = 6 cm 1 ) as displayed on the oscilloscope (128 times averaging). We apply a four-cycle US burst at 2.3 MHz (equivalent to an axial resolution of 2.6 mm ).

Fig. 4
Fig. 4

(a) Transverse section of the 10% intralipid and agar scattering phantom ( thickness = 2.3 cm , μ s = 6 cm 1 ) with an ink-absorbing inclusion of 3 mm × 4 mm × 3 mm ( x , y , z ) (b) AO image performed with four bursts of 2.3 MHz US, i.e., 2.6 mm in axial resolution.

Metrics