Abstract

We modeled the intensity noise of a distributed-feedback fiber laser (DFB-FL) with external laser injection. The transfer function for injected power perturbation was obtained. Simulation indicates that the laser relaxation oscillation frequency is not affected by external laser injection and is determined by the laser pump power, which provides a promising way to investigate the actual pump power budget over the whole wavelength-division multiplexing (WDM) fiber-laser sensor array integrated in a single fiber. The intensity noise enhancement for each sensing unit thus can be evaluated exactly, and we observe an increase of 9dB in the intensity noise level for two DFB-FLs incorporated in a WDM fiber-laser array.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
    [CrossRef]
  2. G. A. Cranch, S. Foster, and C. K. Kirkendall, Proc. SPIE 7503, 750352 (2009).
    [CrossRef]
  3. G. A. Cranch, M. A. Englund, and C. K. Kirkendall, IEEE J. Quantum Electron. 39, 1579 (2003).
    [CrossRef]
  4. S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
    [CrossRef]
  5. C. R. Giles and E. Desurvire, J. Lightwave Technol. 9, 271 (1991).
    [CrossRef]
  6. S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, Appl. Phys. B 66, 19 (1998).
    [CrossRef]

2009

G. A. Cranch, S. Foster, and C. K. Kirkendall, Proc. SPIE 7503, 750352 (2009).
[CrossRef]

2008

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

2007

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

2003

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, IEEE J. Quantum Electron. 39, 1579 (2003).
[CrossRef]

1998

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, Appl. Phys. B 66, 19 (1998).
[CrossRef]

1991

C. R. Giles and E. Desurvire, J. Lightwave Technol. 9, 271 (1991).
[CrossRef]

Cranch, G. A.

G. A. Cranch, S. Foster, and C. K. Kirkendall, Proc. SPIE 7503, 750352 (2009).
[CrossRef]

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, IEEE J. Quantum Electron. 39, 1579 (2003).
[CrossRef]

De Geronimo, G.

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, Appl. Phys. B 66, 19 (1998).
[CrossRef]

Desurvire, E.

C. R. Giles and E. Desurvire, J. Lightwave Technol. 9, 271 (1991).
[CrossRef]

Englund, M. A.

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, IEEE J. Quantum Electron. 39, 1579 (2003).
[CrossRef]

Flockhart, G. M. H.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

Foster, S.

G. A. Cranch, S. Foster, and C. K. Kirkendall, Proc. SPIE 7503, 750352 (2009).
[CrossRef]

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

Giles, C. R.

C. R. Giles and E. Desurvire, J. Lightwave Technol. 9, 271 (1991).
[CrossRef]

Kirkendall, C. K.

G. A. Cranch, S. Foster, and C. K. Kirkendall, Proc. SPIE 7503, 750352 (2009).
[CrossRef]

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, IEEE J. Quantum Electron. 39, 1579 (2003).
[CrossRef]

Laporta, P.

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, Appl. Phys. B 66, 19 (1998).
[CrossRef]

Milnes, M.

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

Svelto, O.

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, Appl. Phys. B 66, 19 (1998).
[CrossRef]

Taccheo, S.

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, Appl. Phys. B 66, 19 (1998).
[CrossRef]

Tikhomirov, A.

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

Appl. Phys. B

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, Appl. Phys. B 66, 19 (1998).
[CrossRef]

IEEE J. Quantum Electron.

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, IEEE J. Quantum Electron. 39, 1579 (2003).
[CrossRef]

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

IEEE Sens. J.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

J. Lightwave Technol.

C. R. Giles and E. Desurvire, J. Lightwave Technol. 9, 271 (1991).
[CrossRef]

Proc. SPIE

G. A. Cranch, S. Foster, and C. K. Kirkendall, Proc. SPIE 7503, 750352 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Magnitude of transfer functions. Parameters used in simulation: n = 1.456 , N 0 = 1.5 × 10 25 , τ 2 = 10 ms , A c = 16.62 μm 2 , σ a = 2.84 × 10 25 m 2 , σ e = 2.38 × 10 25 m 2 , σ p = 2.15 × 10 25 m 2 , σ e = 4.4 × 10 25 m 2 , σ a = 4.7 × 10 25 m 2 .

Fig. 2
Fig. 2

Simulated fiber-laser intensity noise.

Fig. 3
Fig. 3

Configuration of the intensity noise measurement system.

Fig. 4
Fig. 4

Single DFB-FL intensity noise of (a) λ 1 and (b) λ 2 in both the time and the frequency domain.

Fig. 5
Fig. 5

Schematic diagram of a WDM fiber-laser sensor array.

Fig. 6
Fig. 6

Relaxation oscillation and intensity noise with different pump power of (a) λ 1 and (b) λ 2 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d n 2 d t = ( W P + W a + W a 0 ) ( 1 n 2 ) n 2 ( W e + W e 0 + 1 τ 2 ) , d q d t = W e n 2 N 0 W a ( 1 n 2 ) N 0 q τ c ,
n 20 = r q a N 0 + 1 / τ c Δ r q N 0 , q 0 = τ c Δ r q [ ( W p 0 + W a 0 ) N 0 Δ r q ( r q a N 0 + 1 / τ c ) ( W p + W a 0 + W e 0 + 1 / τ 2 ) ] .
d δ n 2 ( t ) d t = A 1 δ n 2 ( t ) A 3 δ q ( t ) + ( 1 n 20 ) δ W p ( t ) A 6 δ q ' ( t ) , d δ q ( t ) d t = A 4 δ n 2 ( t ) + ( A 3 N 0 + A 5 ) δ q ( t ) c q 0 n l e δ γ ( t ) ,
RIN ( f ) = | H p ( f ) | 2 δ W P ( f ) 2 W p 0 2 + | H l ( f ) | 2 δ Γ ( f ) 2 γ 0 2 + | H e ( f ) | 2 δ Q ' ( f ) q 0 ' ,
H p ( f ) = A 2 A 4 s 2 + A 1 s + A 3 A 4 ( A 3 N 0 + A 5 ) s ( A 3 N 0 + A 5 ) A 1 , H l ( f ) = A 5 ( s + A 1 ) s 2 + A 1 s + A 3 A 4 ( A 3 N 0 + A 5 ) s ( A 3 N 0 + A 5 ) A 1 , H e ( f ) = A 6 A 4 s 2 + A 1 s + A 3 A 4 ( A 3 N 0 + A 5 ) s ( A 3 N 0 + A 5 ) A 1 ,

Metrics