Abstract

Although white-light interferometers have become well-established tools for measuring smooth, rough, and microstructured surfaces, there are some limitations in certain applications, e.g., if tilted surface areas or small radii of curvature are to be measured. Since the correction of chromatic aberrations is not perfect over the total field of view or the total pupil plane, dispersion differences occur for different ray paths of the microscopic imaging system. The influence of these effects is discussed on the basis of the most commonly used Mirau interferometer, and the resulting systematic measuring errors are explained.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, Meas. Sci. Technol. 19, 015303 (2008).
    [CrossRef]
  2. P. Pavliček and O. Hýbl, Appl. Opt. 47, 2941 (2008).
    [CrossRef] [PubMed]
  3. P. de Groot, X. Colonna de Lega, J. Kramer, and M. Turzhitsky, Appl. Opt. 41, 4571 (2002).
    [CrossRef] [PubMed]
  4. A. Harasaki and J. C. Wyant, Appl. Opt. 39, 2101 (2000).
    [CrossRef]
  5. P. Lehmann, Proc. SPIE 6188, 618811 (2006).
    [CrossRef]
  6. R. Berger, T. Sure, and W. Osten, Proc. SPIE 6616, 66162E (2007).
    [CrossRef]
  7. P. Lehmann and J. Niehues, in Fringe 2009: 6th International Workshop on Advanced Optical Metrology (Springer, 2009), p. 244.
  8. H.-G. Rhee, T. V. Vorburger, J. W. Lee, and J. Fu, Appl. Opt. 44, 5919 (2005).
    [CrossRef] [PubMed]
  9. A. Pförtner and J. Schwider, Appl. Opt. 40, 6223 (2001).
    [CrossRef]
  10. P. Pavliček and J. Soubousta, Appl. Opt. 43, 766 (2004).
    [CrossRef] [PubMed]
  11. X. Colonna de Lega, Proc. SPIE 5531, 208 (2007).
    [CrossRef]

2008 (2)

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

P. Pavliček and O. Hýbl, Appl. Opt. 47, 2941 (2008).
[CrossRef] [PubMed]

2007 (2)

R. Berger, T. Sure, and W. Osten, Proc. SPIE 6616, 66162E (2007).
[CrossRef]

X. Colonna de Lega, Proc. SPIE 5531, 208 (2007).
[CrossRef]

2006 (1)

P. Lehmann, Proc. SPIE 6188, 618811 (2006).
[CrossRef]

2005 (1)

2004 (1)

2002 (1)

2001 (1)

2000 (1)

Berger, R.

R. Berger, T. Sure, and W. Osten, Proc. SPIE 6616, 66162E (2007).
[CrossRef]

Colonna de Lega, X.

Coupland, J. M.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

de Groot, P.

Fu, J.

Gao, F.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

Harasaki, A.

Hýbl, O.

Kramer, J.

Leach, R. K.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

Lee, J. W.

Lehmann, P.

P. Lehmann, Proc. SPIE 6188, 618811 (2006).
[CrossRef]

P. Lehmann and J. Niehues, in Fringe 2009: 6th International Workshop on Advanced Optical Metrology (Springer, 2009), p. 244.

Niehues, J.

P. Lehmann and J. Niehues, in Fringe 2009: 6th International Workshop on Advanced Optical Metrology (Springer, 2009), p. 244.

Osten, W.

R. Berger, T. Sure, and W. Osten, Proc. SPIE 6616, 66162E (2007).
[CrossRef]

Pavlicek, P.

Petzing, J.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

Pförtner, A.

Rhee, H.-G.

Schwider, J.

Soubousta, J.

Sure, T.

R. Berger, T. Sure, and W. Osten, Proc. SPIE 6616, 66162E (2007).
[CrossRef]

Turzhitsky, M.

Vorburger, T. V.

Wyant, J. C.

Proc. SPIE (1)

R. Berger, T. Sure, and W. Osten, Proc. SPIE 6616, 66162E (2007).
[CrossRef]

Appl. Opt. (6)

Meas. Sci. Technol. (1)

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

Proc. SPIE (2)

P. Lehmann, Proc. SPIE 6188, 618811 (2006).
[CrossRef]

X. Colonna de Lega, Proc. SPIE 5531, 208 (2007).
[CrossRef]

Other (1)

P. Lehmann and J. Niehues, in Fringe 2009: 6th International Workshop on Advanced Optical Metrology (Springer, 2009), p. 244.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sinusoidal profile measured by a chromatically corrected SWLI system. Top, comparison of envelope and phase evaluation results (an offset of 0.5 μm was added to make the two profiles distinguishable). Bottom, difference between results of envelope and phase evaluation; lateral scale corresponds to 0.5 μm pixel pitch.

Fig. 2
Fig. 2

Model functions showing the wavelength dependence of (a) the spectral distribution as a combination of light source spectrum and camera sensitivity and (b) the refractive index according to the Sellmeier formula.

Fig. 3
Fig. 3

Computation of (a) the envelope and (b) the interference component of an original SWLI signal according to Eq. (1) and a shifted signal according to Eq. (2).

Fig. 4
Fig. 4

Schemes of ray bundle propagation through a Mirau objective assuming (a) a convex surface curvature and (b) a concave surface curvature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ I ( z z 0 ) = 0 S ( k ) cos [ 2 k ( z z 0 ) + φ 0 ] d k .
Δ I ( z z 0 ) = 0 S ( k ) cos { 2 k ( z z 0 ) + 2 k [ n ( k ) n 0 ] Δ z + φ 0 } d k .
S ( k ) = 1 2 π Δ k exp { ( k k 0 ) 2 2 ( Δ k ) 2 } ,
Δ I ( z z 0 ) = ( 1 + η 2 ) 1 / 4 exp ( 2 ( Δ k ) 2 ξ 2 1 + η 2 ) cos ( 2 k 0 ( z z 0 ) η 2 ( Δ k ) 2 ξ 2 1 + η 2 + arctan ( η ) + φ 0 ) ,

Metrics