Abstract

A symmetric off-axis holographic setup, shaped as an arrowhead, which requires neither a collimator nor a beam splitter, is presented. It is applied to measure small perpendicular-to-surface displacements and deformations and the magnetostriction of a body by holographic interferometry. It offers advantages such as implicit fulfilment of several hologram recording conditions, possible use of short coherence length light sources, low-cost, and significant immunity against mechanical perturbations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  2. T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Verlaj, 1996).
  3. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  4. Y. Gentet and M. K. Shevtsov, J. Opt. Technol. 76, 399(2009).
    [CrossRef]
  5. V. Micó, J. García, Z. Zalevesky, and B. Jadivi, Opt. Lett. 34, 1492 (2009).
    [CrossRef] [PubMed]
  6. B. Lau and E. Mattes, Appl. Opt. 31, 4738 (1992).
    [CrossRef] [PubMed]
  7. C. L. Ladera, “Reporte final: aplicaciones de la interferometría laser en la I.P.P.C.N,” (Universidad Simón Bolívar1992).
  8. N. Abramson, Appl. Opt. 8, 1235 (1969).
    [CrossRef] [PubMed]
  9. P. James, O. Eriksson, and O. Hjortsman, Appl. Phys. Lett. 76, 915 (2000).
    [CrossRef]
  10. J. H. Contreras, “Holografía interferométrica: reducción y aplicaciones del montaje punta-de-flecha,” Licenciatura dissertation (Universidad Simón Bolívar, 1999). Tutored by C. L. Ladera.
  11. P. T. Squire, Meas. Sci. Technol. 5, 67 (1994).
    [CrossRef]
  12. K. G. Librecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133(1993).
    [CrossRef]
  13. R. R. Birss and E. D. Isaac, Metal Oxides, D.J.Craik, ed. (Wiley, 1975), Vol. 1, pp. 289–348.

2009 (2)

2000 (1)

P. James, O. Eriksson, and O. Hjortsman, Appl. Phys. Lett. 76, 915 (2000).
[CrossRef]

1994 (1)

P. T. Squire, Meas. Sci. Technol. 5, 67 (1994).
[CrossRef]

1993 (1)

K. G. Librecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133(1993).
[CrossRef]

1992 (1)

1969 (1)

Abramson, N.

Birss, R. R.

R. R. Birss and E. D. Isaac, Metal Oxides, D.J.Craik, ed. (Wiley, 1975), Vol. 1, pp. 289–348.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Contreras, J. H.

J. H. Contreras, “Holografía interferométrica: reducción y aplicaciones del montaje punta-de-flecha,” Licenciatura dissertation (Universidad Simón Bolívar, 1999). Tutored by C. L. Ladera.

Eriksson, O.

P. James, O. Eriksson, and O. Hjortsman, Appl. Phys. Lett. 76, 915 (2000).
[CrossRef]

García, J.

Gentet, Y.

Hall, J. L.

K. G. Librecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133(1993).
[CrossRef]

Hjortsman, O.

P. James, O. Eriksson, and O. Hjortsman, Appl. Phys. Lett. 76, 915 (2000).
[CrossRef]

Isaac, E. D.

R. R. Birss and E. D. Isaac, Metal Oxides, D.J.Craik, ed. (Wiley, 1975), Vol. 1, pp. 289–348.

Jadivi, B.

James, P.

P. James, O. Eriksson, and O. Hjortsman, Appl. Phys. Lett. 76, 915 (2000).
[CrossRef]

Kreis, T.

T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Verlaj, 1996).

Ladera, C. L.

C. L. Ladera, “Reporte final: aplicaciones de la interferometría laser en la I.P.P.C.N,” (Universidad Simón Bolívar1992).

Lau, B.

Librecht, K. G.

K. G. Librecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133(1993).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Mattes, E.

Micó, V.

Shevtsov, M. K.

Squire, P. T.

P. T. Squire, Meas. Sci. Technol. 5, 67 (1994).
[CrossRef]

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, 1979).

Zalevesky, Z.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. James, O. Eriksson, and O. Hjortsman, Appl. Phys. Lett. 76, 915 (2000).
[CrossRef]

J. Opt. Technol. (1)

Meas. Sci. Technol. (1)

P. T. Squire, Meas. Sci. Technol. 5, 67 (1994).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

K. G. Librecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133(1993).
[CrossRef]

Other (6)

R. R. Birss and E. D. Isaac, Metal Oxides, D.J.Craik, ed. (Wiley, 1975), Vol. 1, pp. 289–348.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Verlaj, 1996).

C. M. Vest, Holographic Interferometry (Wiley, 1979).

J. H. Contreras, “Holografía interferométrica: reducción y aplicaciones del montaje punta-de-flecha,” Licenciatura dissertation (Universidad Simón Bolívar, 1999). Tutored by C. L. Ladera.

C. L. Ladera, “Reporte final: aplicaciones de la interferometría laser en la I.P.P.C.N,” (Universidad Simón Bolívar1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Arrowhead setup: point source P, reference beam MH, and object beam OH define the arrowhead. H is the recording medium, S is a light stop (use a He–Ne or a diode laser as the light source). Object AO is a beam that can rotate about an axis through A (also illustrated: magnetostriction of a ferrite rod, in the magnetic field of a long coil, being measured by holographic interferometry).

Fig. 2
Fig. 2

Interference fringes in the reconstructed real image of a double-exposure hologram of a lightly loaded cantilever, recorded using the arrowhead setup of Fig. 1. Part of a mechanical support appears below the cantilever with no interference fringes on it.

Fig. 3
Fig. 3

Fringe separations ( ± 1 mm ) measured on the reconstructed real interferograms of a rotated lever plotted against the displacement Δ S of the lever far end. The continuous line is given by the theory.

Fig. 4
Fig. 4

Longitudinal magneto-elastic contraction ( ± 0.08 μm ) of a ferrite rod (Fig. 1) in a coil magnetic field plotted against the voltage applied to the coil. The continuous line is a second-degree polynomial approximation.

Metrics