Abstract

A tunable dual-wavelength double-pass singly resonant optical parametric oscillator based on a single KTP crystal has been proposed and demonstrated. By setting the rear mirror tuning angle precisely, collinear and noncollinear dual phase matching can be established simultaneously and leads to a two-wavelength oscillation at steady state. With high-speed KTP angle tuning, two wavelengths and their frequency difference can be adjusted continuously and accurately. By using this newly developed dual-wavelength optical parametric oscillator to pump a DAST crystal, a monochromatic terahertz wave ranging from 0.5 to 3THz has been successfully generated in a difference- frequency generation system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Fischer and L. A. Kulevskii, Sov. J. Quantum Electron. 7, 135 (1977).
    [CrossRef]
  2. M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Opt. Commun. 142, 153 (1997).
    [CrossRef]
  3. T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).
    [CrossRef]
  4. H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, Jpn. J. Appl. Phys. 46, 7321 (2007).
    [CrossRef]
  5. A. Godard, M. Raybaut, O. Lambert, J. -P. Faleni, M. Lefebvre, and E. Rosencher, J. Opt. Soc. Am. B 22, 1966(2005).
    [CrossRef]
  6. F. Ji, R. Lu, B. Li, B. Zhang, and J. Yao, Opt. Commun. 282, 126 (2009).
  7. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, Opt. Lett. 25, 1714 (2000).
    [CrossRef]
  8. Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
    [CrossRef]
  9. C.-W. Hsu, C.-T. Chen, and C.-C. Yang, J. Opt. Soc. Am. B 19, 1150 (2002).
    [CrossRef]
  10. R. A. Baumgartner and R. L. Byer, IEEE. J. Quantum Electron. 15, 432 (1979).
    [CrossRef]
  11. SNLO version 50, nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, New Mexico, USA.

2009 (1)

F. Ji, R. Lu, B. Li, B. Zhang, and J. Yao, Opt. Commun. 282, 126 (2009).

2007 (1)

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, Jpn. J. Appl. Phys. 46, 7321 (2007).
[CrossRef]

2005 (1)

2004 (1)

T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).
[CrossRef]

2002 (1)

2000 (1)

1997 (1)

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Opt. Commun. 142, 153 (1997).
[CrossRef]

1995 (1)

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

1979 (1)

R. A. Baumgartner and R. L. Byer, IEEE. J. Quantum Electron. 15, 432 (1979).
[CrossRef]

1977 (1)

R. Fischer and L. A. Kulevskii, Sov. J. Quantum Electron. 7, 135 (1977).
[CrossRef]

Baumgartner, R. A.

R. A. Baumgartner and R. L. Byer, IEEE. J. Quantum Electron. 15, 432 (1979).
[CrossRef]

Byer, R. L.

R. A. Baumgartner and R. L. Byer, IEEE. J. Quantum Electron. 15, 432 (1979).
[CrossRef]

Chen, C.

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Chen, C.-T.

Deng, D.

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Faleni, J. -P.

Fischer, R.

R. Fischer and L. A. Kulevskii, Sov. J. Quantum Electron. 7, 135 (1977).
[CrossRef]

Galech, J.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Opt. Commun. 142, 153 (1997).
[CrossRef]

Gardiner, T. D.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Opt. Commun. 142, 153 (1997).
[CrossRef]

Godard, A.

Hatanaka, T.

Hsu, C.-W.

Ito, H.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, Jpn. J. Appl. Phys. 46, 7321 (2007).
[CrossRef]

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, Opt. Lett. 25, 1714 (2000).
[CrossRef]

Ji, F.

F. Ji, R. Lu, B. Li, B. Zhang, and J. Yao, Opt. Commun. 282, 126 (2009).

Kawase, K.

Kulevskii, L. A.

R. Fischer and L. A. Kulevskii, Sov. J. Quantum Electron. 7, 135 (1977).
[CrossRef]

Lambert, O.

Lefebvre, M.

Li, B.

F. Ji, R. Lu, B. Li, B. Zhang, and J. Yao, Opt. Commun. 282, 126 (2009).

Lin, B.

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Lin, S.

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Liu, X.

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Lu, R.

F. Ji, R. Lu, B. Li, B. Zhang, and J. Yao, Opt. Commun. 282, 126 (2009).

Milton, M. J. T.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Opt. Commun. 142, 153 (1997).
[CrossRef]

Molero, F.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Opt. Commun. 142, 153 (1997).
[CrossRef]

Nakamura, K.

Nakanishi, H.

T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).
[CrossRef]

Nawahara, A.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, Jpn. J. Appl. Phys. 46, 7321 (2007).
[CrossRef]

Raybaut, M.

Rosencher, E.

Sato, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, Jpn. J. Appl. Phys. 46, 7321 (2007).
[CrossRef]

Suizu, K.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, Jpn. J. Appl. Phys. 46, 7321 (2007).
[CrossRef]

Takahashi, H.

Taniuchi, T.

Wu, B.

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Wu, L.-A.

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Wu, Q.

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Xu, Z.

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Yamashita, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, Jpn. J. Appl. Phys. 46, 7321 (2007).
[CrossRef]

Yang, C.-C.

Yao, J.

F. Ji, R. Lu, B. Li, B. Zhang, and J. Yao, Opt. Commun. 282, 126 (2009).

Zhang, B.

F. Ji, R. Lu, B. Li, B. Zhang, and J. Yao, Opt. Commun. 282, 126 (2009).

IEEE. J. Quantum Electron. (1)

R. A. Baumgartner and R. L. Byer, IEEE. J. Quantum Electron. 15, 432 (1979).
[CrossRef]

J. Appl. Phys. (1)

T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Am. B. (1)

Z. Xu, X. Liu, D. Deng, Q. Wu, L.-A. Wu, B. Wu, S. Lin, B. Lin, and C. Chen, J. Opt. Soc. Am. B. 12, 2222 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, Jpn. J. Appl. Phys. 46, 7321 (2007).
[CrossRef]

Opt. Commun. (2)

F. Ji, R. Lu, B. Li, B. Zhang, and J. Yao, Opt. Commun. 282, 126 (2009).

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Opt. Commun. 142, 153 (1997).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

R. Fischer and L. A. Kulevskii, Sov. J. Quantum Electron. 7, 135 (1977).
[CrossRef]

Other (1)

SNLO version 50, nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, New Mexico, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of proposed dual-wavelength double-pass singly resonant KTP OPO.

Fig. 2
Fig. 2

(a) Dual-wavelength spectra with KTP angle tuning. (b) Dual-phase-matched DPSRO output versus 532 nm pump energy.

Fig. 3
Fig. 3

(a) Wavelength evolution: λ 1 is the collinear phase-matched wavelength and λ 2 is the non collinear phase-matched wavelength; (b) frequency difference changing with KTP angle tuning; (c) calculated and measured maximal frequency difference with rear M2 tilting angle.

Fig. 4
Fig. 4

DAST DFG system using dual-phase-matched DPSRO. Inset, 2.1 THz radiation output pulse train.

Fig. 5
Fig. 5

(a) THz output versus pump energy. Solid lines, quadratic fitting curves. (b) Left axis, THz output spectrum; right axis, power product of two idle waves.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ k = ( ω p c ) · Δ n p + g ε 2 b Δ ω ε ,
g = k s k p / ( 2 k i ) ,
Δ n p = n p θ | θ m · Δ θ ,
b = k s ω s k i ω i ( n g _ s n g _ i ) / c .

Metrics